БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431 свойств ядра в конечном счёте должно опираться на релятивистскую квантовую теорию элементарных частиц, к-рая сама по себе в современном её состоянии не свободна от внутр. противоречий и не может считаться завершённой. Хотя сравнительно небольшие в среднем скорости нуклонов в ядре (0,1 с) неск. упрощают теорию, позволяя строить её в первом приближении на основе нерелятивистской квантовой механики, ядерная задача многих тел остаётся пока одной из фундаментальных проблем физики. По всем этим причинам до сих пор, исходя из "первых принципов", рассматривалась только структура простейших ядер - дейтрона и трёхнуклонных ядер 3Н и 3Не. Структуру более сложных ядер пытаются понять с помощью ядерных моделей, в к-рых ядро гипотетически уподобляется к.-л. более простой и лучше изученной физ. системе.

Оболочечная модель. Её прообразом является многоэлектронный атом. Согласно этой модели, каждый нуклон находится в ядре в определённом индивидуальном квантовом состоянии, характеризуемом энергией, моментом вращения j, его проекцией т на одну из координатных осей и орбитальным моментом вращения / = j± */2 [чётность состояния нуклона Р = (-1)']. Энергия уровня не зависит от проекции момента вращения на внешнюю ось. Поэтому в соответствии с Паули принципом на каждом энергетич. уровне с моментами j, / может находиться (2/ +1) тождественных нуклонов (протонов и нейтронов), образующих "оболочку" (/',/). Полный момент вращения заполненной оболочки равен нулю. Поэтому если ядро составлено только из заполненных протонных и нейтронных оболочек, то его спин будет также равен нулю. Всякий раз, когда количество протонов или нейтронов достигает магич. числа, отвечающего заполнению очередной оболочки, возникает возможность скачкообразного изменения нек-рых характеризующих ядро величин (в частности, энергии связи). Это создаёт подобие периодичности в свойствах ядер в зависимости от А и Z, аналогичной периодич. закону для атомов. В обоих случаях физ. причиной периодичности является принцип Паули, запрещающий двум тождественным фермионам (частицам с полуцелыми спинами) находиться в одном и том же состоянии. Однако оболочечная структура у ядер проявляется значительно слабее, чем в атомах. Происходит это гл. обр. потому, что в ядрах индивидуальные квантовые состояния частиц ("орбиты") возмущаются взаимодействием ("столкновениями") их друг с другом гораздо сильнее, чем в атомах. Более того, известно, что большое число ядерных состояний совсем не похоже на совокупность движущихся в ядре независимо друг от друга нуклонов, т. е. не может быть объяснено в рамках обол очечной модели. Наличие таких коллективных состояний указывает на то, что представления об индивидуальных нуклонных орбитах являются скорее методич. базисом теории, удобным для описания нек-рых состояний ядра, чем физ. реальностью.

В этой связи в оболочечную модель вводится понятие квазичастиц - элементарных возбуждений среды, эффективно ведущих себя во многих отношениях подобно частицам. При этом Я. а. рассматривается как квантовая жидкость, точнее как ферми-жидкость конечных размеров. Ядро в осн. состоянии рассматривается как вырожденный ферми-газ квазичастиц, к-рые эффективно не взаимодействуют друг с другом, поскольку всякий акт столкновения, изменяющий индивидуальные состояния квазичастиц, запрещён принципом Паули. В возбуждённом состоянии ядра, когда 1 или 2 квазичастицы находятся на более высоких индивидуальных энергетич. уровнях, эти частицы, освободив орбиты, занимавшиеся ими ранее внутри ферми-сферы (см. Ферми поверхность), могут взаимодействовать как друг с другом, так и с образовавшейся дыркой в нижней оболочке. В результате взаимодействия с внешней квазичастицей может происходить переход квазичастиц из заполненных состояний в незаполненное, вследствие чего старая дырка исчезает, а новая появляется; это эквивалентно переходу дырки из одного состояния в другое, Т. о., согласно оболочечной модели, основывающейся на теории квантовой ферми-жидкости, спектр нижних возбуждённых состояний ядер определяется движением 1-2 квазичастиц вне ферми-сферы и взаимодействием их друг с другом и с дырками внутри ферми-сферы. Этим самым объяснение структуры многонуклонного ядра при неболыных энергиях возбуждения фактически сводится к квантовой проблеме 2-4 взаимодействующих тел (квазичастица - дырка или 2 квазичастицы - 2 дырки). Применение теории ферми-жидкости к Я. а. было развито А. Б. Мигдалом (1965). Трудность теории состоит, однако, в том, что взаимодействие квазичастиц и дырок не мало и потому нет уверенности в невозможности появления низкоэнергетич. возбуждённого состояния, обусловленного большим числом квазичастиц вне ферми-сферы.

В др. вариантах оболочечной модели вводится эффективное взаимодействие между квазичастицами в каждой оболочке, приводящее к перемешиванию первоначальных конфигураций индивидуальных состояний. Это взаимодействие учитывается по методике теории возмущений (справедливой для малых возмущений). Внутр. непоследовательность такой схемы состоит в том, что эффективное взаимодействие, необходимое теории для описания опытных фактов, оказывается отнюдь не слабым. Кроме того, как показывает сравнение теоретич. и экспериментальных данных, в разных оболочках приходится вводить разные эффективные взаимодействия, что увеличивает число эмпирически подбираемых параметров модели.

Осн. теоретич. разновидности модели оболочек модифицируются иногда введением различного рода дополнит, взаимодействий (напр., взаимодействия квазичастиц с колебаниями поверхности ядра) для достижения лучшего согласия теории с экспериментом.

Т. о., совр. оболочечная модель ядра фактически является полуэмпирич. схемой, позволяющей понять нек-рые закономерности в структуре ядер, но не способной последовательно количественно описать свойства ядра. В частности, ввиду перечисленных трудностей непросто выяснить теоретически порядок заполнения оболочек, а следовательно, и "магические числа", к-рые служили бы аналогами периодов таблицы Менделеева для атомов. Порядок заполнения оболочек зависит, во-первых, от характера силового поля, к-рое определяет индивидуальные состояния квазичастиц, и, во-вторых, от смешивания конфигураций. Последнее обычно принимается во внимание лишь для незаполненных оболочек. Наблюдаемые на опыте магические числа нейтронов (2, 8, 20, 28, 40, 50, 82, 126) и протонов (2, 8, 20, 28, 50, 82) отвечают квантовым состояниям квазичастиц, движущихся в прямоугольной или осцилляторной потенциальной яме со спин-орбитальным взаимодействием (именно благодаря ему возникают числа 28, 40, 82 и 126). Объяснение самого факта существования магических чисел было крупным успехом модели оболочек, впервые предложенной М. Гёпперт-Майер и И. X. Д. Йенсеном в 1949-50.

Др. важным результатом модели оболочек даже в простейшей форме (без учёта взаимодействия квазичастиц) является получение квантовых чисел осн. состояний нечётных ядер и приближённое описание данных о магнитных дипольных моментах таких ядер. Согласно оболочечной модели, эти величины для нечётных ядер определяются состоянием (величинами ;', /) последнего "несларенного" нуклона. В этом случае / = ;', Р = (-1)'. Магнитный дипольный момент и. (в ядерных магнетонах), если неспаренным нуклоном является нейтрон, равен:
[30-32-6.jpg]

В случае неспаренного протона:
[30-32-7.jpg]

Здесь ц„ = 1,913 и мР = 2,793 - магнитные моменты нейтрона и протона. Зависимости и. от ;' при данном I = j± 4/з наз. линиями Шмидта. Магнитные дипрльные моменты практически всех нечётных ядер, согласно опытным данным, лежат между линиями Шмидта, но не на самих линиях, как это требуется простейшей оболочечной моделью (рис.

1,2). Тем не менее близость экспериментальных значений магнитных дипольных моментов ядер к линиям Шмидта такова, что, зная j = 1 и м можно в большинстве случаев однозначно определить /. Данные о квадрупольных электрич. моментах ядер значительно хуже описываются оболочечной моделью как по знаку, так и по абс. величине. Существенно, однако, что в зависимости квадрупольных моментов от А и Z наблюдается периодичность, соответствующая магич. числам.

Все эти сведения о ядрах (значения 1Р, электрич. и магнитных моментов осн. состояний, магич. числа, данные о возбуждённых состояниях) позволяют принять схему заполнения ядерных оболочек, приведённую на рис. 3.

Несферичность ядер. Ротационная модель. Согласно экспериментальным данным в области массовых чисел 150<Л< < 190 и Л>200, квадрупольные моменты О ядер с/>4/2 чрезвычайно велики, они отличаются от значений, предсказываемых оболочечной моделью, в 10-100 раз. В этой же области значений А зависимость энергии нижних возбуждённых состояний ядер от спина ядра оказывается поразительно похожей на зависимость энергии вращающегося волчка от его момента вращения. Особенно чётко это выражено у ядер с чётными А и Z. В этом случае энергия / возбуждённого уровня со спином / даётся соотношением:
[30-32-8.jpg]

где J - величина, практически не зависящая от / и имеющая размерность момента инерции. Спины возбуждённых состояний в (10) принимают, как показывает опыт, только чётные значения: 2, 4, 6,... (соответствует осн.