БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431ся на большие углы, Резерфорд предположил, что положит, заряд атома сосредоточен в малом по размерам Я. а. (до этого господствовали представления Дж. Томсона, согласно к-рым положит, заряд атома считался равномерно распределённым по его объёму). Идея Резерфорда была принята его современниками не сразу (гл. препятствием была убеждённость в неизбежном падении атомных электронов на ядро из-за потери энергии на электромагнитное излучение при движении по орбите вокруг Я. а.). Большую роль в её признании сыграла знаменитая работа Н. Бора (1913), положившая начало квантовой теории атома. Бор постулировал стабильность орбит как исходный принцип квантования движения атомных электронов и из него затем вывел закономерности линейчатых оптич. спектров, объяснявших обширный эмпирич. материал (Бальмера серия и др.). Неск. позже (в кон. 1913) ученик Резерфорда Г. Мозли экспериментально показал, что смещение коротковолновой границы линейчатых рентгеновских спектров атомов при изменении порядкового номера Z элемента в периодической системе элементов соответствует теории Бора, если допустить, что электрич. заряд Я. а. (в единицах заряда электрона) равен Z. Это открытие полностью сломало барьер недоверия: новый физ. объект - Я. а. оказался прочно связанным с целым кругом на первый взгляд разнородных явлений, получивших теперь единое и физически прозрачное объяснение. После работ Мозли факт существования Я. а. окончательно утвердился в физике.

Состав ядра. Ко времени открытия Я. а. были известны только две элементарные частицы - протон и электрон, В соответствии с этим считалось вероятным, что Я. а. состоит из них. Однако в кон. 20-х гг. 20 в. протонно-электронная гипотеза столкнулась с серьёзной трудностью, получившей назв. "азотной катастрофы": по протонно-электронной гипотезе ядро азота должно было содержать 21 частицу (14 протонов и 7 электронов), каждая из к-рых имела спин 1/2. Спин ядра азота должен был быть полуцелым, а согласно данным по измерению оптич. молекулярных спектров спин оказался равным 1.

Состав Я. а. был выяснен после открытия Дж. Чедвиком (1932) нейтрона. Масса нейтрона, как выяснилось уже из первых экспериментов Чедвика, близка к массе протона, а спин равен '/2 (установлено позже). Идея о том, что Я. а. состоит из протонов и нейтронов, была впервые высказана в печати Д. Д. Иваненко (1932) и непосредственно вслед за этим развита В. Гейзенбергом (1932). Предположение о протонно-нейтронном составе ядра получило в дальнейшем полное экспериментальное подтверждение. В совр. ядерной физике протон (р) и нейтрон (п) часто объединяются общим названием нуклон. Общее число нуклонов в Я. а. наз. массовым числом А, число протонов равно заряду ядра Z (в единицах заряда электрона), число нейтронов N - А - Z. У изотопов одинаковое Z, но разные А и N, у ядер-изобар одинаковое А и разные Z и N.

В связи с открытием новых частиц, более тяжёлых, чем нуклоны, т. н. нуклонных изобар (см. Резонансы), выяснилось, что они также должны входить в состав Я. а. (внутриядерные нуклоны, сталкиваясь друг с другом, могут превращаться в нуклонные изобары). В простейшем ядре - дейтроне, состоящем из одного протона и одного нейтрона, нуклоны ~ 1% времени должны пребывать в виде нуклонных изобар. Ряд наблюдаемых явлений (особенно ядерных реакций под действием частиц высоких энергий) свидетельствует в пользу существования таких изобарных состояний в ядрах. Помимо нуклонов и нуклонных изобар, в ядрах периодически на короткое время (10~23- 10-24 сек) появляются мезоны, в т. ч. легчайшие из них - я-мезоны (см. Пи-мезоны). Взаимодействие нуклонов сводится к многократным актам испускания мезона одним из нуклонов и поглощения его другим. Возникающие т. о. обменные мезонные токи сказываются, в частности, на электромагнитных свойствах ядер. Наиболее отчётливое проявление обменных мезонных токов обнаружено в реакции расщепления дейтрона электронами высоких энергий и 7-квантами.

Взаимодействие нуклонов. Силы, удерживающие нуклоны в ядре, наз. ядерными. Это самые сильные из всех известных в физике взаимодействий (см. Сильные взаимодействия). Ядерные силы, действующие между двумя нуклонами в ядре, по порядку величины в сто раз интенсивнее электростатич. взаимодействия между протонами. Важным свойством ядерных сил является их изотопическая инвариантность, т. е. независимость от зарядового состояния нуклонов: ядерные взаимодействия двух протонов, двух нейтронов или нейтрона и протона одинаковы, если одинаковы состояния относит, движения этих пар частиц. Величина ядерных сил зависит от расстояния между нуклонами, от взаимной ориентации их спинов, от ориентации спинов относительно орбитального момента вращения и радиуса-вектора, проведённого от одной частицы к другой. В соответствии с этим различают ядерные силы центральные, спин-спиновые, спин-орбитальные и тензорные.

Ядерные силы характеризуются определённым радиусом действия: потенциал этих сил убывает с расстоянием г между частицами быстрее, чем г-2, а сами силы- быстрее, чем г-3. Из рассмотрения физ. природы ядерных сил следует, что они должны убывать с расстоянием экспоненциально. Радиус действия ядерных сил определяется т. н. комптоновской длиной волны г0 мезонов, к-рыми обмениваются нуклоны в процессе взаимодействия:

r0 = h/tic, (1), здесь ц - масса мезона, ft - Планка постоянная, с - скорость света в вакууме. Наибольший радиус действия имеют силы, обусловленные обменом я-мезонами. Для них Го = 1,41 ф (1 ф = Ю-13 см). Межнуклонные расстояния в ядрах имеют именно такой порядок величины, однако существ, вклад в ядерные силы вносят обмены и более тяжёлыми мезонами (л-, р-, ш-мезоны и др.). Точная зависимость ядерных сил между двумя нуклонами от расстояния и относит, вклад ядерных сил, обусловленных обменом мезонов разных типов, с определённостью не установлены. В многонуклонных ядрах возможны силы, к-рые не сводятся к взаимодействию только пар нуклонов. Роль этих т. н. многочастичных сила структуре ядер остаётся пока не выясненной. Размеры ядер зависят от числа содержащихся в них нуклонов. Средняя плотность числа р нуклонов в ядре (их число в единице объёма) для всех многонуклонных ядер (А > 0) практически одинакова. Это означает, что объём ядра пропорционален числу нуклонов А, а его линейный размер ~А . Эффективный радиус ядра R определяется соотношением:

R = аА1/\ (2) где константа а близка к г0, но отличается от него и зависит от того, в каких физ. явлениях измеряется R. В случае т. н. зарядового радиуса ядра, измеряемого по рассеянию электронов на ядрах или по положению энергетич. уровней \1-мезоатомов: а= 1,12 ф. Эффективный радиус, определённый из процессов взаимодействия адронов (нуклонов, мезонов, сс-частиц и др.) с ядрами, неск. больше зарядового: от 1,2 ф до 1,4 ф.

Плотность ядерного вещества фантастически велика сравнительно с плотностью обычных веществ: она равна примерно 1014г/см3. В ядре р почти постоянно в центр, части и экспоненциально убывает к периферии. Для приближённого описания эмпирич. данных иногда принимают след, зависимость р от расстояния г от центра ядра:

р(г) = р„/(1 + e(r-R")/b. (3) Эффективный радиус ядра R равен при этом Ro +6.Величина Ъ характеризует размытость границы ядра, она почти одинакова для всех ядер ("0,5 ф). Параметр ро - удвоенная плотность на -"границе" ядра, определяется из условия нормировки (равенства объёмного интеграла от р числу нуклонов А). Из (2) следует, что размеры ядер варьируются по порядку величины от Ю-13 ел до Ю-12 см для тяжёлых ядер (размер атома -~ Ю-8см). Однако формула (2) описывает рост линейных размеров ядер с увеличением числа нуклонов лишь огрублённо, при значит, увеличении А. Изменение же размера ядра в случае присоединения к нему одного или двух нуклонов зависит от деталей структуры ядра и может быть иррегулярным. В частности (как показали измерения изотопич. сдвига атомных уровней энергии), иногда радиус ядра при добавлении двух нейтронов даже уменьшается.

Энергия связи и масса ядра. Энергией связи ядра Есвв наз. энергия, к-рую необходимо затратить на расщепление ядра на отд. нуклоны. Она равна разности суммы масс входящих в него нуклонов и массы ядра, умноженной на с2 (см. Относительности теория):

Есв = (Zmp + Nmn - М) с2. (4)

Здесь Тор, Топ и М - массы протона, нейтрона и ядра. Замечательной особенностью ядер является тот факт, что Есв приблизительно пропорциональна числу нуклонов, так что удельная энергия связи Есв/А слабо меняется при изменении А (для большинства ядер Есв/А = = 6-8 Мэв). Это свойство, наз. насыщением ядерных сил, означает, что каждый нуклон эффективно связывается не со всеми нуклонами ядра (в этом случае энергия связи была бы пропорциональна А2 при А1), а лишь с нек-рыми из них. Теоретически это возможно, если силы при изменённом расстоянии изменяют знак (притяжение на одних расстояниях сменяется отталкиванием на других). Объяснить эффект насыщения ядерных сил, исходя из имеющихся данных о потенциале взаимодействия двух нуклонов, пока не удалось (известно около 50 вариантов ядерного межнуклонного потенциала, удовлетворительно описывающих свойства дейтрона и рассеяние нуклона на нуклоне; ни один из них не мож