БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431форма ядра в этом изомерном состоянии сильно отличается от формы ядра в основном состоянии (изомерия формы ядр а). В 1968 были обнаружены т. н. п о д б а р ь е р н ы е делительные резонанс ы при захвате нейтронов ядрами 240Ри и 237 Np. Явления спонтанного деления из изомерного состояния и наличие подбарьерных делительных резонансов объясняются моделью, предложенной В. М. Струтинским (СССР), учитывающей формирование нуклонных оболочек у сильно деформированных ядер. Она приводит к форме барьера деления, показанной на рис. 7, с дополнит, минимумом потенциальной энергии при деформации ядра. Существование этого минимума может объяснить природу спонтанно делящихся изомеров. Нижнее состояние во второй потенциальной яме на барьере деления должно быть изомерным. Электромагнитные переходы из этого состояния в основное (лежащее в первой яме) должны быть запрещены из-за потенциального барьера, разделяющего обе потенциальные ямы. В то же время нек-рых особенностей у ещё не синтезированных трансурановых элементов. Согласно капельной модели, атомные ядра
[30-32-2.jpg]

должны быть неустойчивы в распадаться спонтанным делением за время ~ 10-21 сек. Учёт влияния нуклонных оболочек на барьер деления приводит к выводу, что появление новых заполненных оболочек (по-видимому, с Z=114 и N=184) будет сопровождаться возрастанием высоты барьера деления до неск. Мэв. На этом основано предположение о существовании -"острова стабильности" сверхтяжёлых трансурановых элементов вблизи Z=114. He исключено, что для нек-рых изотопов этого "острова" время жизни превысит десятки тысяч лет. Следует, однако, иметь в виду, что пока наличие островов стабильности остаётся чисто гипотетич. возможностью, опирающейся на определённые предположения о деталях структуры ядер сверхтяжёлых трансурановых элементов.

Лит.: Hahn О., Strassman F., "Naturwissenscbaften", 1939, Jg 27, № 1, S. 11; П е т р ж а к К. А., Ф л е р о в Г. Н., "Журнал экспериментальной и теоретической физики", 1940, т. 10, в. 9 - 10, с. 1013; Френкель Я. И., там же, 1939, т. 9, в. 6, с. 641; Петржак К. А., Флеров Г. Н., "Успехи физических наук", 1961, т. 73, в. 4, с. 655, Струтинский В. М., Деление ядер, "Природа", 1976, № 9; Л и х м а н Р. Б., Деление ядра, в кн.: Физика атомного ядра п плазмы, пер. с англ., М., 1974.

ЯДРА ГАЛАКТИК, компактные массивные сгущения вещества в центральных частях многих галактик. Оптич. светимость Я. г. колеблется в широких пределах и, как правило, ядра ярче у галактик, имеющих большую светимость. Обычно светимость Я. г. составляет неск. процентов от светимости галактики, в отдельных случаях сравнима с её полным излучением, а у большинства галактик ядро в оптич. диапазоне вообще не наблюдается. Известны галактики, лишённые ядер, напр. Большое и Малое Магеллановы Облака - спутники нашей звёздной системы (Галактики), карликовые галактики типа Скульптора и Печи.

В центральных областях ряда достаточно ярких (абс. звёздная величина меньше -15) и массивных галактик наблюдаются крупные эллипсоидальной формы сгущения, получившие назв. "балдж" (от англ, bulge - выпуклость). Я. г. располагается внутри балджа и на его фоне выделяется как более яркое образование. В балджах и Я. г. обнаружены звёзды, газ и пыль. Внутри собственно ядер иногда видны звездообразные ядрышки - керны (некоторые астрономы именно их называют Я. г.). Керны обнаружены пока лишь в 4 ближайших галактиках: Туманности Андромеды, в двух её спутниках и в спиральной галактике МЗЗ. Размеры кернов составляют неск. пс, массы -10; -108 MQ (масс

Солнца), их абс. звёздные величины заключены в пределах от -9 до -12. Керны вращаются гораздо быстрее центральных областей галактик и имеют сплюснутую форму (рис. 1).

До сер. 20 в. изучению Я. г. уделяли сравнительно мало внимания. В 1958 В. А. Амбарцумяи подчеркнул наличие у Я. г. особых свойств и указал на важную роль ядер в эволюции галактик. Интерес к Я. г. возрос в связи с открытием активности ядер, проявляющейся: в мощном нетепловом излучении, охватывающем практически все диапазоны (рис. 2) от метровых радиоволн до жёсткого рентгеновского излучения (оно связано с наличием частиц очень высоких энергий); в переменности потока излучения; в бурных движениях газа; в извержении струй и сгустков (конденсаций) вещества. Данные о мощности излучения Я. г. в нек-рых диапазонах длин волн приведены в след. таблице.

Тип объекта

Мощность излучения, эрг/сек
Х=22 мкм, инфракрасный диапазон

Х=2- 5А, рентгеновский диапазон



Квазар ЗС 273 ..............

5,1*1045
3,8*1044
1,4*1 013
1,36*1043
5*1019

4,5*1041
5,6*1040
1039
~1038
~1034



Радиогалактика NGC 1275........



Эллиптическая галактика М87 .....



Сейфертовская галактика NGC 4151 . .



Ядро нашей Галактики ..........




Среди спиральных галактик наибольшая активность ядер наблюдается у т. н. сейфертовских галактик, среди эллиптич. галактик - у N-галактик и радиогалактик. Особенно высока активность квазаров, к-рые по совр. представлениям являются ядрами далёких гигантских галактик. Источники энергии, ответственные за активность Я. г., как и процессы, приводящие к ускорению в Я. г. заряженных частиц до релятивистских скоростей, пока окончательно не установлены. Т. о., Я. г.- не просто массивные гравитационно связанные компактные комплексы, состоящие из звёзд, межзвёздного газа и пыли, а образования, обладающие рядом специфич. свойств. Существует неск. гипотез о природе активности Я. г. и квазаров.

1) Я. г.- компактное (~1 пс) массивное (~107М„) звёздное скопление, в к-ром поддерживается звездообразование за счёт попадания в ядерную область газа или за счёт слияния мелких звёзд в более крупные при частых столкновениях в условиях большой плотности звёзд в ядрах (~ 10 Мф/яс3). Массивные звёзды быстро эволюционируют, вспыхивают как сверхновые и превращаются в нейтронные звёзды или "чёрные дыры". При этом выделяется гравитац. энергия, обусловливающая активность Я. г. Нейтронные звёзды, проявляющие себя как пульсары, могут порождать потоки релятивистских частиц, необходимые для достижения наблюдаемой мощности излучения. За активность Я. г. могут быть ответственны также "вспышки" звездообразования - рождение большого числа (десятки звёзд в год) молодых горячих звёзд, к-рые своим мощным ультрафиолетовым и корпускулярным излучением имитируют активность ядер.

2) Я. г.- компактное массивное быстро-вращающееся тело (т. н. ротатор или спинор), обладающее сильным магнитным (квазидипольным) полем. Это поле, подобно полю пульсаров, ускоряет частицы до релятивистских скоростей и обусловливает их мощное летепловое излучение. Энергия в этом случае черпается из запасов энергии вращения спинора.

3) Я. г.- "чёрная дыра" с массой М > 103 MQ, на к-рую происходит падение (аккреция) окружающего газа и звёзд. В принципе механизм аккреции может обусловить выделение гравитац. энергии в количестве 1054 (M/MQ) эрг, достаточном для объяснения активности Я. г.

4) По гипотезе В. А. Амбарцумяна, активность Я. г. обусловлена распадом находящегося в них гипотетич. "дозвёздного вещества". Распад происходит взрывообразно и сопровождается выделением значит, энергии. По Амбарцумяну, активность Я. г. играет определяющую роль в эволюции галактик.

Различия в активности Я. г. указывают, по-видимому, что у галактик разных типов она может достигать разных степеней и что в процессе эволюции галактик стадия активности их ядер может повторяться.

Центральную область нашей Галактики исследуют методами радио-, инфракрасной и рентгеновской астрономии, т. к. из-за сильного поглощения света межзвёздной пылью оптич. исследования галактич. центра невозможны. Ядро Галактики совпадает с западным компонентом радиоисточника Стрелец А. В центр, области ядра и вблизи неё обнаружены компактные источники нетеплового радиоизлучения (~0,01 пс в поперечнике). По радиоизлучению ионизованного водорода установлено, что в центре Галактики есть область расширяющегося газа поперечником ~300 пс и более протяжённая (~600 пс) область инфракрасного излучения (облака пыли). В центр, области есть также звёздное скопление эллипсоидальной формы с размерами полуосей 800 X 300 пс, масса к-рого ~10°MQ.

Ядро Галактики окружено вращающимся газовым диском (диаметром 1600 пс и ср. толщиной ок. 400 пс). По своим свойствам ядро Галактики относится к активным, что резко отличает её от ближайшей спиральной галактики Туманность Андромеды, у к-рой признаков активности в ядре не обнаружено.

Лит.: Происхождение и эволюция галактик и звезд. Сб. ст., под ред. С. Б. Пикельнера, М., 1976.

Ю. Н. Дрожжин-Лабинский, Б. В. Комберг.

ЯДРА КОНДЕНСАЦИИ, мельчайшие нейтральные частицы или ионы, на к-рых происходит конденсация паров. Только благодаря наличию Я. к. в атмосфере возможны конденсация водяного пара и образование облаков. Я. к. служат гигроскопич. частицы, содержащие хлориды, сульфиты, сульфиды,