БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431дерных моментов. Величина расщеплений в этом случае не зависит от Н0.

Наблюдение спектров ЯМР осуществляется путём медленного изменения частоты ш поля Hi или напряжённости поля Но. Часто применяется модуляция поля Но полем звуковой частоты. При исследованиях кристаллов лучшую чувствительность даёт метод "быстрой модуляции": поле Но модулируется звуковой частотой так, что процессы, определяемые временем релаксации Т1, не успевают завершиться за период модуляции, и состояние системы спинов нестационарно. Применяются также импульсные методы (воздействие поля Hi ограничено во времени короткими импульсами). Важнейшие из них-метод спинового эха и фуръе-спектроскопия.

Эдс индукции пропорциональна HV Поэтому обычно эксперименты выполняют в сильном магнитном поле. Основным элементом радиочастотной аппаратуры, применяемой для наблюдения ЯМР, является настроенный на частоту прецессии контур, в катушку индуктивности к-рого помещается исследуемое вещество. Катушка выполняет 2 функции: создаёт действующее на исследуемое вещество радиочастотное магнитное поле Н" и воспринимает эдс, наведённые прецессией ядерных моментов. Контур включается в радиочастотный мост или в генератор, работающий на пороге генерации. Методом ЯМР были измерены моменты атомных ядер, впервые исследованы состояния с инверсной заселённостью уровней. Исследования релаксац. процессов, ширины и тонкой структуры линий ЯМР дали много сведений о структуре жидкостей и твёрдых тел. ЯМР высокого разрешения представляет собой наряду с инфракрасной спектроскопией стандартный метод определения строения органич. молекул. Тесная связь формы сигналов с внутр. движением в веществе позволяет использовать ЯМР для исследования заторможённых вращений в молекулах и кристаллах. ЯМР используется также для изучения механизма и кинетики хим. реакций. На ЯМР основаны приборы для прецизионного измерения и стабилизации магнитного поля (см. Квантовый магнитометр). За открытие и объяснение ЯМР (1946) Ф. Блоху и Э. Пёрселлу была присуждена Нобелевская премия по физике за 1952. Лит.: В 1 о с h F., "Physical Review", 1946, v. 70, № 7-8, p. 460; В 1 о e m Ь е гg e n N., Purcell E. M., P о u n d R. V., там же, 1948, v. 73, № 7, p. 679; A 6 p aгам А., Ядерный магнетизм, пер. с англ., М., 1963; Александров И. В., Теория магнитной релаксации. Релаксация в жидкостях и твердых неметаллических парамагнетиках, М., 1975; Сликтер Ч., Основы теории магнитного резонанса с примерами из физики твердого тела, [пер.], М., 1967; ПоплД., ШнейдерВ., Бернстейн Г., Спектры ядерного магнитного резонанса высокого разрешения, пер. с англ., М., 1962; ЭмслиДж., ФинейДж., С а т к л и Ф Л., Спектроскопия ядерного магнитного резонанса высокого разрешения, пер. с англ., т. 1-2, М., 1968-69; Ф a p p a p Т., Б е кк e p Э., Импульсная и фурье-спектроскопия ЯМР, пер. с англ., М., 1973.

К. В. Владимирский.

ЯДЕРНЫЙ ПАРАМАГНЕТИЗМ, магнетизм веществ, обусловленный магнитными моментами атомных ядер. В постоянном магнитном поле Но существование магнитных моментов ядер приводит к слабому парамагнетизму в виде небольшой добавочной ядерной намагниченности Мо = %Но, где 1 - магнитная ядерная восприимчивость. Намагниченность Л/о в 106 - 108 раз меньше, чем в случае электронного парамагнетизма. Я. п. впервые обнаружен в 1937 Л. В. Шубниковым и Б. Г. Лазаревым (СССР) в твёрдом водороде. Изучается методом ядерного магнитного резонанса.

ЯДЕРНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ (ЯРД), ракетный двигатель, в к-ром тяга создаётся за счёт энергии, выделяющейся при радиоактивном распаде или ядерной реакции. Соответственно типу происходящей в ЯРД ядерной реакции выделяют радиоизотопный ракетный двигатель, термоядерный ракетный двигатель и собственно ЯРД (используется энергия деления ядер). ЯРД состоит из реактора, реактивного сопла, турбонасосного агрегата (ТНА) для подачи рабочего тела в реактор из бака двигательной установки (где оно хранится в жидком состоянии), управляющих агрегатов и др. элементов. В ядерном реакторе рабочее тело превращается в высокотемпературный газ, при истечении к-рого создаётся тяга. Газ для привода ТНА можно получить нагревом осн. рабочего тела в реакторе. Сопло ТНА и мн. др. агрегаты ЯРД аналогичны соответств. элементам жидкостных ракетных двигателей (ЖРД). Принципиальное отличие ЯРД от ЖРД - в наличии ядерного реактора вместо камеры сгорания (разложения). Достоинство ЯРД - в их высоком удельном импульсе благодаря большой скорости истечения рабочего тела, достигающей 50 км/сек и более. По удельному импульсу ЯРД значительно превосходят химические ракетные двигатели, у к-рых скорость истечения рабочего тела не превышает 4,5 км/сек. В стадии тех-нич. разработки (1977) экспериментальный амер. ЯРД "Нерва-I" ("Nerva-1"); при массе 11 т развивает тягу св. 300 ки при удельном импульсе 8,1 км/сек. К 1978 созданы экспериментальные образцы радиоизотопных ЯРД с тягой до неск. и. Использование всех типов ЯРД предусматривается только в космосе. Лит.: Бассард Р. В., Де-Лауэр Р. Д., Ракета с атомным двигателем пер. с англ., М., 1960; и х ж е, Ядерные двигатели для самолётов и ракет, пер. с англ., М., 1967.

ЯДЕРНЫЙ РЕАКТОР, устройство, в к-ром осуществляется управляемая ядерная цепная реакция, сопровождающаяся выделением энергии. Первый Я. р. построен в декабре 1942 в США под руководством Э. Ферми. В Европе первый Я. р. пущен в декабре 1946 в Москве под руководством И. В. Курчатова. К 1978 в мире работало уже ок. тысячи Я. р. различных типов. Составными частями любого Я. р. являются: активная зона с ядерным топливом, обычно окружённая отражателем нейтронов, теплоноситель, система регулирования цепной реакции, радиац. защита, система дистанц. управления (рис. 1). Осн. характеристикой Я. р. является его мощность. Мощность в 1 Мет соответствует

цепной реакции, в к-рой происходит 3*1016 актов деления в 1 сек.

В активной зоне Я. р. находится ядерное топливо, протекает цепная реакция ядерного деления и выделяется энергия. Состояние Я. р. характеризуется эффективным коэфф. К3ф размножения нейтронов или реактивностью р:

Р = (Каф - 1)/Кэф. (1)

Если Хэф > 1, то цепная реакция нарастает во времени, Я. р. находится в н а дкритичном состоянии и его реактивность р > 0; если Кэ& < 1, то реакция затухает, реактор - подкритич е н, р < 0; при К0ф= 1, р = 0 реактор находится в критич. состоянии, идёт стационарный процесс и число делений постоянно во времени. Для инициирования цепной реакции при пуске Я. р. в активную зону обычно вносят источник нейтронов (смесь Ra и Be, 252Cf и др.), хотя это и не обязательно, т. к. спонтанное деление ядер урана и космические лучи дают достаточное число начальных нейтронов для развития цепной реакции приХэф> 1.

В качестве делящегося вещества в большинстве Я. р. применяют 233U. Если активная зона, кроме ядерного топлива (природный или обогащённый уран), содержит замедлитель нейтронов (графит, вода и др. вещества, содержащие лёгкие ядра, см. Замедление нейтронов), то осн. часть делений происходит под действием тепловых нейтронов (тепловой реактор). В Я. р. на тепловых нейтронах может быть использован природный уран, не обогащённый 235U (такими были первые Я. р.). Если замедлителя в активной зоне нет, то осн. часть делений вызыват ется быстрыми нейтронами с энергией Еп > Ю кэв (быстрый реактор). Возможны также реакторы на п р о м е ж уточных нейтронах с энергией 1 - 1000 эв.

По конструкции Я. р. делятся на гетерогенные реакторы, в к-рых ядерное топливо распределено в активной зоне дискретно в виде блоков, между к-рыми находится замедлитель нейтронов (рис. 2), и гомогенные реакторы, в к-рых ядерное топливо и замедлитель представляют однородную смесь (раствор или суспензия). Блоки с ядерным топливом в гетерогенном Я. р., наз. тепловыделяющими элементами (ТВЭЛ'ами), образуют правильную решётку; объём, приходящийся на один ТВЭЛ, наз. ячейкой. По характеру использования Я. р. делятся на энергетические реакторы и исследовательские реакторы. Часто один Я. р. выполняет неск. функций (см. Двухцелевой реактор).

Условие критичности Я. р. имеет вид: К,Ф = КХ-Р=1, (1), где 1 - Р - вероятность выхода (утечки) нейтронов из активной зоны Я. р., Кх- коэфф. размножения нейтронов в активной зоне бесконечно больших размеров, определяемый для тепловых Я. р. так наз. "формулой 4 сомножителей":

Кх = мефв. (2) Здесь v - среднее число вторичных (быстрых) нейтронов, возникающих при делении ядра 235U тепловыми нейтронами, е - коэфф. размножения на быстрых нейтронах (увеличение числа нейтронов за счёт деления ядер, гл. обр. ядер 238U, быстрыми нейтронами); ср - вероятность того, что нейтрон не захватится ядром 238U в процессе замедления, & - вероятность того, что тепловой нейтрон вызовет деление. Часто пользуются величиной Т| = v/(l + а), где а - отношение сечения радиац. захвата ар к сечению деления ад.

Условие (1) определяет размеры Я. р. Напр., для Я. р. из естеств. урана и графита v = 2,4, е " 1,03, ЕфО и 0,44, откуда К" = 1,08. Это означает, что для Кас> 1 необходимо Р< 0,93, что соответствует (как показывает теория Я. р.) размерам активной зоны Я. р. ~5-10 м. Объём совр. энергетич. Я. р. достигает сотен м3и о