БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431нструктивном оформлении Я. з. помещают в стальную оболочку, так что общая его масса вместе с инициирующими устройствами составляет обычно от неск. сотен кг до неск. т. При употреблении Я. з. в качестве ядерного оружия его для доставки к месту назначения помещают в авиац. бомбу, боевую головку ракеты, в торпеду и т. п.

Я. з. применялись в мирных целях для различных крупномасштабных взрывных работ, при добыче полезных ископаемых и т. д.

Лит. см. при ст. Ядерный взрыв.

ЯДЕРНЫЙ КВАДРУПОЛЬНЫЙ РЕЗОНАНС (ЯКР), резонансное поглощение электромагнитной энергии в кристаллах, обусловленное переходами между энергетич. уровнями, образующимися в результате взаимодействия ядер, обладающих электрич. квадрупольным моментом, с электрич. кристаллическим полем. ЯКР является частным случаем ядерного магнитного резонанса (ЯМР) в кристаллах. Т. н. "чистый" ЯКР наблюдается в отсутствии постоянного магнитного поля.

Взаимодействие квадрупольного момента ядра с неоднородным внутр. электрич. полем Е кристалла приводит к появлению энергетич. состояний, соответствующих различным ориентациям ядерного спина S относительно кристаллографич. осей. Радиочастотное магнитное поле, так же как и в случае ЯМР, вызывает вынужденные магнитные дипольные переходы между этими состояниями, что обнаруживается как резонансное поглощение электромагнитной энергии. Т. к. энергия квадрупольного взаимодействия изменяется в широких пределах в зависимости от свойств ядра и структуры кристалла, то частоты ЯКР лежат в диапазоне от сотен кгц до тысяч Мгц. Положение энергетич. уровней не зависит от ориентации осей кристалла относительно прибора, что позволяет пользоваться поликристаллич. образцами. Аппаратура, применяемая для исследования ЯКР, принципиально не отличается от спектрометров ЯМР.

При исследовании ЯКР измерения в отсутствии постоянного магнитного поля Но дополняются измерениями в поле Но. В зависимости от соотношения между энергией квадрупольного взаимодействия ядра с полем Е и энергией магнитного взаимодействия с полем Но говорят о квадрупольном расщеплении линий

ЯМР или о зеемановском расщеплении в ЯКР.

Метод ЯКР применяется в ядерной физике для определения квадрупольных моментов ядер. Методом ЯКР исследуются также симметрия и строение кристаллов, степень упорядоченности макромолекул и характер хим. связи. Исследования кристаллов осн. на связи между структурой кристаллов и значениями градиентов поля Е. Если в случае ЯМР структура кристаллов определяет только возмущения зеемановских уровней, приводящие к уширению и расщеплению линий, то в случае ЯКР структура кристалла определяет сами резонансные частоты. Для ЯКР характерна сильная зависимость ширины линий от наличия дефектов в кристалле. Измерение ширины линий позволяет исследовать внутр. напряжения, присутствие примесей и явления упорядочения в кристаллах.

Лит.: Абрагам А., Ядерный магнетизм, пер. с англ., М., 1963; Гречи шк и н В. С., Ядерные квадрупольные взаимодействия в твердых телах, М., 1973; Сём и н Г. К., Бабушкина Т. А., Якобсон Г. Г., Применение ядерного квадрупольного резонанса в химии, Л., 1972.

ЯДЕРНЫЙ МАГНЕТОН, см. Магнетон.

ЯДЕРНЫЙ МАГНИТНЫЙ РЕЗОНАНС (ЯМР), резонансное поглощение электромагнитной энергии веществом, обусловленное переориентацией магнитных моментов атомных ядер. ЯМР - один из методов радиоспектроскопии. Наблюдается в сильном постоянном магнитном поле Но, на к-рое накладывается слабое радиочастотное магнитное поле Hi Но.Резонансный характер явления определяется свойствами ядер, обладающих моментом количества движения J - М и магнитным моментом;

Ц = У1. (1) Здесь / - спин ядра, у - гиромагнитное отношение (величина, характерная для данного вида ядер), h - Планка постоянная. Частота, на к-рой наблюдается ЯМР:

шо = уНо. (2) Для протонов в поле Но = 104 э ш/2я = = 42,57 Мгц; для большинства ядер эти значения лежат в диапазоне 1-10 Мгц. Порядок величины резонансного поглощения определяется равновесной ядерной намагниченностью вещества (ядерным парамагнетизмом): U0 = Хо Н0, где xо - статич. ядерная восприимчивость.

ЯМР, как и др. виды магнитного резонанса, можно описать классич. моделью гироскопа. В постоянном магнитном поле Но пара сил, обусловленная магнитным моментом ц, вызывает прецессию магнитного и механич. моментов, аналогичную прецессии волчка под действием силы тяжести. Магнитный момент д прецессирует вокруг направления Но с частотой шо = уНо, угол прецессии в остаётся неизменным (рис. 1). В результате воздействия радиочастотного поля Hi резонансной частоты шо уголв изменяется со скоростью yH1pad/сек, что приводит к значит, изменениям проекции и на направление поля Но даже в слабом поле H1.

С квантовой точки зрения ЯМР обусловлен переходами между уровнями энергии взаимодействия магнитных ди-польных моментов ядра с полем Но. В простейшем случае изолированных, свободных от др. воздействий ядерных спинов, условие Е= -уhНот (т = 1, /- 1,..., ..., -/) определяет систему (21 + 1) эквидистантных уровней энергии ядра в поле Н0. Частота ш0 соответствует переходу между двумя соседними уровнями.

Представление об изолированных ядерных спинах является идеализацией; в действительности ядерные спины взаимодействуют между собой и с окружением, напр, кристаллич. решёткой. Это приводит к установлению теплового равновесия (к релаксации). Релаксац. процессы характеризуются постоянными T1 и Тз, к-рые описывают изменения продольной и поперечной составляющих ядерной намагниченности. Изменение первой связано с изменением энергии системы ядерных спинов в поле Но (спин-решёточная релаксация). Изменения поперечной составляющей определяются в основном внутр. взаимодействиями в самой системе спинов (спин-спиновая релаксация). Значения T1 лежат в пределах от 10-4 сек для растворов парамагнитных солей до неск. ч для очень чистых диамагнитных кристаллов. Значения Тг изменяются от 10-4 сек для кристаллов до неск. сек для диамагнитных жидкостей. T1 и Т2 связаны со структурой и характером теплового движения молекул вещества. Для жидкостей T1и Т2, как правило, близки, но становятся резко различными при кристаллизации, сопровождающейся всегда значит, уменьшением Т2. Большие Tt в очень чистых диамагнитных кристаллах объясняются малостью внутр. магнитных полей. В кристаллах, содержащих парамагнитные примеси, тепловой контакт с решёткой осуществляется немногими ядрами, находящимися вблизи от атомов примеси, где локальное поле значительно сильнее. Равновесное распределение, образовавшееся возле атома примеси, распространяется по всему кристаллу за счёт обмена состояниями соседних ядерных спинов в результате магнитного дипольного взаимодействия (спиновая теплопроводность). В металлах и сплавах осн. механизм релаксации - взаимодействие электронов проводимости с ядерными моментами. Оно приводит также к сдвигу резонансных частот (см. Най-товский сдвиг).

Резонансная линия имеет ширину &ш = 2/Т2 (рис. 2). В сильных полях Hi наступает "насыщение" - увеличение ширины и уменьшение амплитуды линии при |y|Hi > (TtT^)~'l2. Насыщение сопровождается уменьшением ядерной намагниченности. Этому соответствует выравнивание населённостей уровней в результате переходов, вызванных полем Hi. Ширина линий в кристаллах определяется магнитным полем соседних ядер. Для многих кристаллов спин-спиновое взаимодействие ядер настолько велико, что приводит к расщеплению резонансной линии.

Большое влияние на времена релаксации, ширину и форму линий ЯМР оказывает взаимодействие электрич. квадру-польного момента ядер Q с локальным электрич. полем в веществе. В жидкостях ЯМР для ядер с большим Q удаётся наблюдать только на веществах с симметричным строением молекул, исключающим появление квадрупольного взаимодействия (напр., 73Ge в тетраэдрич. молекуле GeCls). В кристаллах квадру-польное взаимодействие часто даёт расщепление уровней ЯМР t^niHo. В этом случае поглощение энергии определяется ядерным квадруполъным резонансом.

Спектры ЯМР в подвижных жидкостях для ядер со спином / = '/а и Q = 0 отличаются узкими линиями (ЯМР высокого разрешения). Спектры высокого разрешения получаются для протонов, ядер l9F, 13C, 31Р и нек-рых др. ядер. Одиночные линии в этом случае получаются только если наблюдается ЯМР ядер, занимающих химически эквивалентные положения (напр., линии водорода в спектрах воды, бензола, циклогексана). Все соединения более сложного строения дают спектры из многих линий (рис. 3), что связано с двумя эффектами. Первый, т. н. химический сдвиг,- результат взаимодействия окружающих ядро электронов с полем Но.

Возмущение состояний электронов вызывает уменьшение постоянной составляющей поля, действующего на ядра, пропорциональное Но. Величина хим. сдвига зависит от структуры электронных оболочек и, т. о., от характера хим. связей, что позволяет судить о структуре молекул по спектру ЯМР. Вторым эффектом является непрямое спин-спиновое взаимодействие. Непосредственное магнитное взаимодействие ядер в подвижных жидкостях затруднено из-за броуновского движения молекул; непрямое спин-спиновое взаимодействие обусловлено поляризацией электронных оболочек полем я