БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431 2; К р и м е р М. 3.,

Шамшурин А. А., Химия ювенильного гормона и его аналогов, Киш., 1972; R 6 11 е г Н., D a h m К. Н., The chemistry and biology of juvenile hormone, в сб.: Recent progress in hormone research, v. 24, N. Y.-L., 1968; Naturally occuring insecticides, ed. M. Jacobson, D. Crosby, N. Y 1971; В оw e r s W. S. et al., Discovery or insect anti-juvenile hormones in plants, "Science", 1976, v. 193, № 4253. Э. П. Серебряков.



30-30.htm
ЮРЬЕВА РЕАКЦИЯ, превращение фу-рана в его аналоги - пиррол (X = NH), тиофен (X = S), селенофен (X = Se):

[30-30-1.jpg]

Осуществляется пропусканием паров фурана соответственно с аммиаком, сероводородом или селеноводородом над окисью алюминия (АЬОз) при 400- 450 "С. Выход 30-40%. В Ю. р. вступают также гидрированные аналоги и гомологи фурана. Напр.,тетрагидрофуран почти количественно превращается в тетрагидротиофен. Открыта в 1935 сов. химиком Ю. К. Юрьевым (1896-1965). Применяется в органич. синтезе для получения нек-рых замещённых пирролов.




30-32.htm
ЯДЕРНОЕ ТОПЛИВО, вещество, к-рое используется в ядерных реакторах для осуществления ядерной цепной реакции деления. Существует только одно природное Я. т. - урановое, к-рое содержит делящиеся ядра 235U, обеспечивающие поддержание цепной реакции (ядерное горючее), и т. н. "сырьевые" ядра 23"U, способные, захватывая нейтроны, превращаться в новые делящиеся ядра 23)Ри, не существующие в природе (вторичное горючее):
[30-31-2.jpg]

Вторичным горючим являются также не встречающиеся в природе ядра 233U, образующиеся в результате захвата нейтронов сырьевыми ядрами 232Th:
[30-31-3.jpg]

Я.т. используется в ядерных реакторах, тепловыделяющие элементы (ТВЭЛы) к-рых представляют собой обычно металлич. оболочки различной формы и длины, содержащие Я. т. и герметично заваренные. По химич. составу Я. т. может быть металлическим (включая сплавы), окисным, карбидным, нитридным и др. Основные требования к Я. т.: хорошая совместимость с материалом оболочки ТВЭЛов; высокие температуры плавления и испарения, большая теплопроводность; слабое взаимодействие с теплоносителем; миним. увеличение объёма (распухание) в процессе облучения в реакторе; технологичность производства и миним. стоимость; простая технология регенерации (см. ниже) и др. Я. т., используемое в реакторах-размножителях на быстрых нейтронах, кроме того, должно обеспечить высокий коэфф. воспроизводства.

Урановое Я. т. для ядерных реакторов на тепловых нейтронах, составляющих основу ядерной энергетики, имеет обычно повышенное содержание изотопа 235U (2-4% по массе вместо 0,71% в естественном уране). Существенный недостаток реакторов на тепловых нейтронах - низкий коэфф. использования природного урана. Несравнимо более высокий коэфф. использования урана может быть достигнут в реакторах-размножителях на быстрых нейтронах. В них используется уран с более высоким содержанием урана 235U (до 30% ), а в будущем, по мере накопления запасов 239Ри, будет использоваться смешанное уран-плутониевое Я. т. с 15-20% Ри. В этом случае вместо обогащённого урана может быть использован природный и даже уран, обеднённый 235U, к-рого накопилось в мире уже достаточно большое количество. Обеднённый уран (без Ри) используется также в экранной зоне реактора-размножителя (зоне воспроизводства), по весу превышающей в неск. раз активную зону. В реакторах на быстрых нейтронах, работающих на уран-плутониевом Я. т., количество накапливающегося 23BPu может существенно превышать количество сгораемого, т. е. имеет место воспроизводство Я. т. Коэфф. воспроизводства зависит от состава Я. т. По степени его возрастания Я. т. располагается в след. порядке: окисное (U, Ри)О2, карбидное (U, Ри)С, нитридное (U, Pu)N и металлическое в виде различных сплавов.

Производство уранового Я. т. (топливный цикл, см. рис.) начинается с переработки руд с целью извлечения из них урана. При предварительной сортировке руды по у-излучению в отвал удаляют 20-30% породы с содержанием урана =S 0,01% (применяются и обычные методы обогащения). Гидрометаллургич. переработка руды состоит в её дроблении, кислотном выщелачивании, сорбционном или экстракционном извлечении U из осветлённых растворов или пульп и получении очищенной закиси-окиси урана U3O8. Для руд, бедных ураном и лёгких для выщелачивания (особенно в трудных для горных работ условиях), применяют подземное выщелачивание в самом месторождении (для пластовых месторождений - через систему скважин, для жильных - в подземных камерах с предварительной отбойкой и дроблением руды взрывными методами).

Далее UaO8 переводят или в тетрафторидир4 для последующего получения металлич. урана или в гексафторид UF6 - единств, устойчивое газообразное соединение урана, используемое для обогащения урана изотопом 235U. Обогащение осуществляется методом газовой термодиффузии или центрифугированием (см. Изотопов разделение). Далее UF6 переводят в двуокись урана, к-рая используется для изготовления сердечников ТВЭЛов или для получения др. соединений урана с той же целью.

К сердечникам ТВЭЛов предъявляются высокие требования в отношении сте-хиометрич. состава и содержания посторонних примесей. Так, в сердечниках из UOj соотношение (по массе) кислорода и металла должно быть в пределах 2,00-2,02; допустимое содержание F и Н2О (по массе) соответственно не более 0,01-0,006% и 0,001%.

Торий как сырьевой материал для получения делящихся ядер 233и не нашёл широкого применения по ряду причин: 1) разведанные запасы U в состоянии обеспечить ядерную энергетику Я. т. на многие десятилетия; 2) Th не образует богатых месторождений, и технология его извлечения из руд сложнее; 3) наряду с 233U образуется 232U, к-рый, распадаясь, образует y-активные ядра (212Bi, 208Te), затрудняющие обращение с таким Я. т. и усложняющие производство ТВЭЛов:
[30-31-4.jpg]

4) переработка облучённых ториевых ТВЭЛов с целью извлечения из них 233U является более трудной и дорогостоящей операцией по сравнению с переработкой урановых ТВЭЛов.

В процессе эксплуатации ТВЭЛов Я. т. выгорает далеко не полностью, в реакторах-размножителях имеет место воепроизводство Я. т. (Ри). Поэтому отработанные ТВЭЛы направляют на переработку с целью регенерации Я. т. для повторного его использования; U и Ри очищают от продуктов деления. Затем Ри в виде РиО2 направляют для изготовления сердечников, a U, в зависимости от его изотопного состава, или также направляют для изготовления сердечников, или переводят в UF6 с целью обогащения 235U.

Регенерация Я. т. - сложный и дорогостоящий процесс переработки высокорадиоактивных веществ, требующий защиты от радиоактивных излучений и дистанционного управления всеми операциями даже после длительной выдержки отработавших ТВЭЛов в спец. хранилищах. При этом в каждом аппарате ограничивается допустимое количество делящихся веществ, чтобы предупредить возникновение самопроизвольной цепной реакции. Большие трудности связаны с переработкой и захоронением радиоактивных отходов. Разрабатываются методы остекловывания и битумирования отходов, "закачка" слабоактивных растворов в глубокие горизонты Земли. Стоимость процессов регенерации Я. т. и переработки радиоактивных отходов оказывает существенное влияние на экономич. показатели атомных электростанций.

Лит.: Химическая технология облученного ядерного горючего, М., 1971; П а т т о н Ф. С., Гу джин Д. М., Гриффите В. Л., Ядерное горючее на основе обогащенного урана, М., 1966; Высокотемпературное ядерное топливо, М., 1969; Займовский А. С., Калашников В. В., Головвин И. С., Тепловыделяющие элементы атомных реакторов, М., 1966.

Ф. Г. Решетников, Д. И. Скороваров.

ЯДЕРНОЙ ФИЗИКИ ЛЕНИНГРАДСКИЙ ИНСТИТУТ им. Б. П. Константинова АН СССР (г. Гатчина Ленингр. обл.), н.-и. учреждение, в к-ром ведутся исследования в области ядерной физики, физики частиц высоких энергий, физики твёрдого тела, а также радиобиологии и молекулярной биологии. Осн. в 1971 под рук. Б. П. Константинова на базе ядерных лабораторий Физико-тех-нич. ин-та АН СССР. В ин-те было проведено экспериментальное доказательство наличия слабого нуклон-нуклонного взаимодействия (совм. с сотрудниками Ин-та теоретич. и экспериментальной физики). Ин-т располагает исследовательским водо-водяным реактором ВВР-М мощностью 16 Мет с потоком тепловых нейтронов до 3-1014 н-см2/сек, фазотроном на энергию 1 Гэв с током до 1 мка, а также системой автоматизир. управления экспериментами на базе ЭВМ.

ЯДЕРНО-ПЛАЗМЕННОЕ ОТНОШЕНИЕ (биол.), отношение объёма ядра клетки к объёму её цитоплазмы. Показатель введён нем. учёным Р. Гертвигом (1908), к-рый считал, что закономерное уменьшение Я.-п. о. - непосредственная причина вступления клетки в деление (эта гипотеза впоследствии не подтвердилась). Объём ядра обычно прямо пропорционален объёму цитоплазмы (в т. ч. и при полиплоидии ядра). Однако известны многочисл. нарушения этой пропорциональности, напр, в ходе развития яйцеклеток или при изменении функциональной активности клетки. В клетках разных тканей Я.-п. о. различно, что является одной из характерис