БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431 состояния (положения) объекта управления.

Сообщения, передаваемые системой ТК, обычно содержат информацию двух видов: сигнализирующую, дающую качеств, оценку состояния как отд. органов управления объекта ("включено", "выключено", "открыто" и т. д.), так и объекта в целом ("стоит", "движется", "вверху", "внизу" и др.), а также параметров, характеризующих объект ("норма", "меньше нормы", "больше нормы", "авария" и др.), и измерительную, дающую количеств, оценку контролируемого параметра (напр., темп-ры, давления, напряжения в электрич. цепи, угла поворота вала и т. д.). Поэтому и соответствующие процессы ТК наз. телесигнализацией (ТС) и телеизмерением (ТИ).

Телеуправление и телеконтроль отличаются от дистанционного управления и дистанционного контроля тем, что все сигналы ТУ и ТК передаются по одной линии связи (существуют многопроводные системы Т., однако число проводов в них существенно меньше числа управляемых или контролируемых объектов). Эта особенность Т. позволяет осуществлять передачу информации на расстояние с меньшими материальными затратами, чем при дистанционном управлении.

Большинство объектов управления -двухпозиционные; они могут находиться в одном из двух состояний (позиций), напр, во включённом или отключённом. Таковы, напр., электродвигатели, осветит, приборы, ж.-д. стрелки. Поэтому и команды управления, как правило, имеют дискретный характер: "включить" - "отключить", "пуск"-"остановка" и т. д. Однако иногда оказывается необходимым плавное изменение управляемого параметра. В этом случае оператор посылает непрерывные сигналы управления и по поступающей от объекта измерит, информации координирует свои дальнейшие действия. Такой вид ТУ наз. телерегулированием (ТР).

Для чёткой, надёжной работы оператора необходимо переданную и принятую информацию представить в виде, наиболее удобном для восприятия её человеком. Для этого на ПУ используются различные сигнализаторы, индикаторы, устройства регистрации автоматической.

Для обеспечения независимой передачи (и приёма) мн. сигналов по одному каналу связи в Т. применяется т. н. разделение сигналов, при к-ром сигналы сохраняют индивидуальные свойства и не искажают друг друга. Из мн. способов разделения сигналов (см. Многоканальная связь) в Т. обычно применяется разделение по времени (каждому объекту отводится определённый интервал времени), по частоте (для каждого объекта устанавливается своя полоса частот), смешанное - частотно-временное (напр., для КП - частотное, а для объектов в рамках одного КП - временное) и адресное (каждому КП присваивается адрес, и все сообщения обязательно начинаются с кода адреса выбранного КП).

Теория Т. изучает вопросы формирования и преобразования телемеханич. сигналов, передачи их по линиям связи с огранич. полосой пропускания частот и при наличии помех, представления информации оператору и технич. реализации ТМС. К осн. проблемам Т. относятся проблемы повышения достоверности передачи информации, эффективного использования каналов связи и создания экономичной и надёжной аппаратуры.

История Т. Области её применения. Первые попытки производить измерения и управлять работой машин на расстоянии относятся к концу 19 в.; термин "Т." был предложен в 1905 франц. учёным Э. Бранли. Первоначально с понятием Т. связывали представление об управлении по радио подвижными воен. объектами. Известны случаи применения средств боевой техники, оснащённых устройствами управления на расстоянии, в 1-й мировой войне 1914-18. Практич. применение Т. в мирных целях началось в 20-х гг. 20 в. гл. обр. на ж.-д. транспорте: ТУ ж.-д. сигнализацией и стрелками было впервые осуществлено в 1927 на ж. д. в Огайо (США) на участке дл. 65 км. В 1930 в СССР был запущен первый в мире радиозонд с оборудованием для ТИ. В 1933 в Московской энергосистеме (Мосэнерго) введено в эксплуатацию первое устройство ТС. В 1935-36 началось практич. применение устройств Т. в Мосэнерго, Ленэнерго, Донбассэнерго. В 1935 реализовано ТУ стрелками и сигналами на Московско-Рязанской ж. д. В нач. 40-х гг. в Москве было введено централизованное ТУ освещением улиц. Серийное заводское произ-во устройств Т. в СССР впервые было организовано в 1950 на заводе "Электропульт". К 1955 выявилась тенденция к технич. переоснащению средств Т.: ненадёжные релейноконтактные элементы начали с 1958 повсеместно заменять полупроводниковыми и магнитными бесконтактными элементами. Первая в СССР электронная система ТИ была разработана в 1955-56. В кон. 60 - нач. 70-х гг. началось оснащение ТМС аппаратурой с использованием интегральных схем.

С каждым годом растёт число оборудованных средствами Т. предприятий химич., атомной, металлургич., горнодобывающей пром-сти, телемеханизированных электрич. станций и подстанций, насосных и компрессорных станций (на нефте- и газопроводах, в системах ирригации и водоснабжения), ж.-д. узлов и аэропортов, усилительных и ретрансляционных установок на линиях связи, систем охранной сигнализации и т. д. Если в 30-х гг. в СССР число телемеханизированных объектов едва достигало неск. десятков, а в 50-х гг. - неск. десятков тыс., то в сер. 70-х гг. их стало св. 500 тыс. К 1975 в энергосистемах СССР находилось в эксплуатации св. 5000 ТМС; телемеханизировано ок. 40 тыс. км жел. дорог; св. 80% всей добываемой в стране нефти давали телемеханизированные скважины. Внедрение ТМС позволяет сократить численность обслуживающего персонала, уменьшает простои оборудования, освобождает человека от работы во вредных для здоровья условиях. Особое значение Т. приобретает в связи с созданием автоматизированных систем управления (АСУ).

В СССР разработаны и успешно применяются (1976) такие системы Т., как, напр., МКТ, "Стимул", ТМ-500, ТМ-511, ТМ-512 (для ТУ энергетич. установками на электростанциях и пром. предприятиях, для управления энергосистемами и энергообъединениями); ТМ-100, ТМ-120-1, ТМ-600, ТМ-625 (для централизованного ТУ газо- и нефтепроводами, линиями электропередачи, различными объектами на нефтепромыслах и транспорте); ТМ-300, ТМ-310, ТМ-320 (для телемеханизации пром. предприятий); ЭСТ-62, "Лисна" (для телемеханизации оборудования систем электроснабжения ж. д.); ЧДЦ, "Нива" (для диспетчерской службы на ж. д.) и др.

Интенсивно ведутся разработка и внедрение самых разнообразных систем Т. и информационных систем с устройствами Т. за рубежом. Во Франции, напр., созданы и успешно эксплуатируются ТМС: "Марафон IV", ТМСС, ТТ-40, ТТ-3000, "Редека", "Телефонта", "Консип", "Телесиль"; в Швейцарии - ДАСА, "Телегир 505", "Телегир 707", ЦУТ, ДФМ, ДУФА; в Бельгии - "Дижитл 140", "Дижитл 1000", ТС-СЛ; в ФРГ - "Геатранс" (Ф-101, Ф-102, Ф-200), ЕФД; в Великобритании - ДТ-3, "Телеплекс", "Серк"; в Италии - ТЛСМ-30, Р-6006, STO-3400; в США-"Бристоль", DS-3500, "Систем-9000", "Дейтлок-7" и др.

Огромную роль играет Т. в освоении космоса. Применение Т.- одно из важнейших условий успешного запуска искусств, спутников Земли, космич. кораблей с человеком на борту, автоматич. межпланетных станций и луноходов. Устройства Т. передают с космич. объектов на пункты управления данные о работе бортовых систем, необходимую измерит, информацию, в т. ч. сведения о состоянии здоровья космонавтов (см. Биотелеметрия)] с помощью устройств Т. осуществляется управление этими объектами с Земли. Применительно к авиации, ракетной технике и космич. кораблям телеуправление и телеизмерения получили назв. радиоуправление и радиотелеметрия.

Лит.: Шастова Г. А., Кодирование и помехоустойчивость передачи телемеханической информации, М.- Л., 1966; Бесконтактвые элементы промышленной телемеханики, М., 1973; Тутевич В. H., Телемеханика, М., 1973; Ильин В. А., Телеуправление и телеизмерение, 2 изд., М., 1974; Макаров В. А., Теоретические основы телемеханики, Л., 1974; Ф р е м к е А. В., Телеизмерения, 2 изд., М., 1975. Г. А. Шастова.

ТЕЛЕМЕХАНИЧЕСКАЯ СИСТЕМА, система телемеханики, комплекс технич. средств для передачи на расстояние по каналам радиосвязи или проводным линиям связи команд от оператора или управляющей вычислит, машины к объектам управления, а также контрольной информации в обратном направлении (см. Телемеханика). Т. с. включает пункт управления (ПУ), где находится оператор (диспетчер), один или неск. контролируемых пунктов (КП), где располагаются объекты управления (контроля), и линии связи (каналы передачи данных), соединяющие ПУ с КП. В сложных Т. с. может быть неск. ПУ - равноправных либо подчинённых друг другу в соответствии с иерархич. принципом. Различают Т. с. для сосредоточенных объектов (находящихся в пределах одного КП; рис. а) и Т. с.

для рассредоточенных объектов (расположенных группами на неск. КП либо рассеянных по одному на большой территории; рис. б, в). Пример Т. с. первого вида - система управления отд. строительным краном, самолётом, насосной станцией и т. д. Характерные примеры Т. с. второго вида -системы управления газо- и нефтепроводами, энергосистемами, ж.-д. узлами, шахтами и заводами, где управление осуществляется с одного диспетчерского пункта.

В Т. с. информация о состоянии и параметрах объектов управления, поступающая на ПУ, обычно воспринимается человеком-о