БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431нут значит, успех в описании процессов с Э. ч. для различных выделенных областей энергий. Однако многие параметры теории заимствовались из эксперимента, а сам подход не мог претендовать на универсальность.

В период 50-70-х гг. был достигнут значит, прогресс в понимании структуры LB3, к-рый позволил существенно уточнить его форму для сильных и слабых взаимодействий. Решающую роль в этом продвижении сыграло выяснение тесной связи между свойствами симметрии взаимодействий Э. ч. и формой Lвз.

Симметрия взаимодействий Э. ч. находит своё отражение в существовании законов сохранения определённых физ. величин и, следовательно, в сохранении связанных с ними квантовых чисел Э. ч. (см. Сохранения законы). Точная симметрия, имеющая место для всех классов взаимодействий, отвечает наличию у Э. ч. точных квантовых чисел; приближённая симметрия, характерная лишь для нек-рых классов взаимодействий (сильных, электромагнитных), приводит к неточным квантовым числам. Отмечавшееся выше различие классов взаимодействий в отношении сохранения квантовых чисел Э. ч. отражает различия в свойствах их симметрии.

Известная форма Lмэл. м для электромагнитных взаимодействий есть следствие существования очевидной симметрии лагранжиана L относительно умножения комплексных полей ф заряженных частиц, входящих в него в комбинациях типа ф*ф (здесь * означает комплексное сопряжение), на множитель е'а, где а - произвольное действит. число. Эта симметрия, с одной стороны, порождает закон сохранения электрич. заряда, с другой стороны, если требовать выполнения симметрии при условии, что а произвольно зависит от точки х пространства-времени, однозначно приводит к лагранжиану взаимодействия:
[30-09-10.jpg]

где jэл.м. - четырёхмерный электромагнитный ток (см. Электромагнитные взаимодействия). Как выяснилось, этот результат имеет общее значение. Во всех случаях, когда взаимодействия проявляют "внутр." симметрию, т. е. лагранжиан инвариантен относительно преобразований "внутр. пространства", а у Э. ч. возникают соответствующие квантовые числа, следует требовать, чтобы инвариантность имела место при любой зависимости параметров преобразования от точки х (т. н. локальная калибровочная инвариантность; Ян Чжэнь-нин, амер. физик Р. Миллс, 1954). Физически это требование связано с тем, что взаимодействие не может мгновенно передаваться от точки к точке. Указанное условие удовлетворяется, когда среди полей, входящих в лагранжиан, присутствуют векторные поля (аналоги Aм(x)), изменяющиеся при пре-

образованиях "внутренней" симметрии и взаимодействующие с полями частиц вполне определённым образом, а именно:
[30-09-11.jpg]

где j (х) - токи, составленные из полей частиц, V (х) - векторные поля, наз. часто калибровочными полями. Т. о., требование локальности "внутр." симметрии фиксирует форму LB3и выделяет векторные поля как универсальные переносчики взаимодействий. Свойства векторных полей и их число "п" определяются свойствами группы "внутр." симметрии. Если симметрия точная, Р то масса кванта поля V равна 0. Для приближённой симметрии масса кванта векторного поля отлична от нуля. Вид тока j определяется полями частиц с ненулевыми квантовыми числами, связанными с группой "внутр." симметрии.

На основании изложенных принципов оказалось возможным подойти к вопросу о взаимодействии кварков в нуклоне. Эксперименты по рассеянию нейтрино и антинейтрино на нуклоне показали, что импульс нуклона лишь частично (примерно на 50%) переносится кварками, а остальная его часть переносится др. видом материи, к-рая не взаимодействует с нейтрино. Предположительно эта часть материи состоит из частиц, к-рыми обмениваются кварки и за счёт к-рых они удерживаются в нуклоне. Эти частицы получили назв. "глюонов" (от англ, glue - клей). С изложенной выше точки зрения на взаимодействия эти частицы естественно считать векторными. В совр. теории их существование связывается с симметрией, обусловливающей появление "цвета" у кварков. Если эта симметрия точная (цветная SU(3)-симметрия), то глюоны - безмассовые частицы и их число равно восьми (амер. физик И. Намбу, 1966). Взаимодействие кварков с глюонами даётся Lвз со структурой (2), где ток j составлен из полей кварков. Имеется
основание предполагать, что взаимодействие кварков, обусловленное обменом безмассовыми глюонами, приводит к силам между кварками, не убывающим с расстоянием, но строго это не доказано.

Принципиально знание взаимодействия между кварками могло бы явиться основой для описания взаимодействия всех адронов между собой, т. е. всех сильных взаимодействий. Это направление в физике адронов быстро развивается.

Использование принципа определяющей роли симметрии (в т. ч. приближённой) в формировании структуры взаимодействия позволило также продвинуться в понимании природы лагранжиана слабых взаимодействий. Одновременно была вскрыта глубокая внутр. связь слабых и электромагнитных взаимодействий. В указанном подходе наличие пар лептонов с одинаковым лептонным зарядом: е-, Ve и м-, Vм, но различными массами и электрич. зарядами расценивается не как случайное, а как отражающее существование нарушенной симметрии типа изотопической (группа SU(2)). Применение принципа локальности к этой "внутр. " симметрии приводит к характерному лагранжиану (2), в к-ром одновременно возникают члены, ответственные за электромагнитное и слабое взаимодействия (амер. физик С. Вайнберг, 1967; А. Солам, 1968):
[30-09-12.jpg]

Здесь jмсл.з., jмсл.н. - заряженный и нейтральный токи слабых взаимодействий, построенные из полей лептонов, W+м, Wм- и Zм0 - поля массивных (из-за нарушенности симметрии) векторных частиц, к-рые в этой схеме являются переносчиками слабых взаимодействий (т. н. промежуточные бозоны), Ам - поле фотона. Идея существования заряженного промежуточного бозона была выдвинута давно (X. Юкава, 1935). Важно, однако, что в данной модели единой теории электромагнитного и слабого взаимодействий заряженный промежуточный бозон появляется на равной основе с фотоном и нейтральным промежуточным бозоном. Процессы слабых взаимодействий, обусловленные нейтральными токами, были обнаружены в 1973, что подтверждает правильность только что изложенного подхода к формулировке динамики слабых взаимодействий. Возможны и др. варианты написания лагранжиана Lслвз, с большим числом нейтральных и заряженных промежуточных бозонов; для окончат, выбора лагранжиана эксперимент, данных ещё недостаточно.

Экспериментально промежуточные бозоны пока не обнаружены. Из имеющихся данных массы W и Z° для модели Вайн-берга - Салама оцениваются примерно в .60 и 80 Гэв.

Электромагнитное и слабое взаимодействия кварков можно описать в рамках модели, аналогичной модели Вайнберга - Салама. Рассмотрение на этой основе электромагнитных и слабых взаимодействий адронов даёт хорошее соответствие наблюдаемым данным. Общей проблемой при построении таких моделей является неизвестное пока полное число кварков и лептонов, что не позволяет определить тип исходной симметрии и характер её нарушения. Поэтому очень важны дальнейшие экспериментальные исследования.

Единое происхождение электромагнитных и слабых взаимодействий означает, что в теории исчезает как независимый параметр константа слабых взаимодействий. Единств, константой остаётся электрич. заряд е. Подавленность слабых процессов при небольших энергиях объясняется большой массой промежуточных бозонов. При энергиях в системе центра масс, сравнимых с массами промежуточных бозонов, эффекты электромагнитных и слабых взаимодействий должны быть одного порядка. Последние, однако, будут отличаться несохранением ряда квантовых чисел (Р, У, Ch и т. д.).

Имеются попытки рассмотреть на единой основе не только электромагнитные и слабые, но также и сильные взаимодействия. Исходным для таких попыток является предположение об единой природе всех видов взаимодействий Э. ч. (без гравитационного). Наблюдаемые сильные различия между взаимодействиями считаются обусловленными значит, нарушением симметрии. Эти попытки ещё недостаточно разработаны и сталкиваются с серьёзными трудностями, в частности в объяснении различий свойств кварков и лептонов.

Развитие метода получения лагранжиана взаимодействия, основанного на использовании свойств симметрии, явилось важным шагом на пути, ведущем к динамич. теории Э. ч. Есть все основания думать, что калибровочные теории поля явятся существенным составным элементом дальнейших теоретич. построений.

Некоторые общие проблемы теории элементарных частиц. Новейшее развитие физики Э. ч. явно выделяет из всех Э. ч. группу частиц, которые существенным образом определяют специфику процессов микромира. Эти частицы - возможные кандидаты на роль истинно Э. ч. К их числу принадлежат: частицы со спином V" - лептоны и кварки, а также частицы со спином 1 - глюоны, фотон, массивные промежуточные бозоны, осуществляющие разные виды взаимодействий частиц со спином 1/2. В эту группу скорее всего следует также включить частицу со спином 2 - грдвитон, квант гравитац. поля, связывающий все Э. ч. В этой схеме мн. вопросы, однако, требуют дальнейшего исследования. Неизвестно, каково полн