БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431ающие одной и той же исходной кварковой структуре. Отсутствие надёжных сведений о взаимодействии кварков не_позволяет пока производить количеств, расчёты спектров возбуждений и делать к.-л. заключения о возможном числе таких возбуждённых состояний.

При формулировке кварковой модели кварки рассматривались как гипотетич. структурные элементы, открывающие возможность очень удобного описания адронов. В дальнейшем были проведены эксперименты, которые позволяют говорить о кварках как о реальных материальных образованиях внутри адронов. Первыми были эксперименты по рассеянию электронов нуклонами на очень большие углы. Эти эксперименты (1968), напоминающие классич. опыты Резерфорда по рассеянию а-частиц на атомах, выявили наличие внутри нуклона точечных заряженных образований. Сравнение данных этих экспериментов с аналогичными данными по рассеянию нейтрино на нуклонах (1973 - 75) позволило сделать заключение о ср. величине квадрата электрич. заряда этих точечных образований. Результат оказался удивительно близким к величине 1/2[(2/з е)2 + 1/3 е)2]. Изучение процесса рождения адронов при аннигиляции электрона и позитрона, к-рый предположительно идёт через последовательность процессов: е++ е- = a + Q адроны, указало на наличие двух групп адронов, генетически связанных с каждым из образующихся кварков, и позволило определить спин кварков. Он оказался равным 1/2. Общее число рождённых в этом процессе адронов свидетельствует также о том, что в промежуточном состоянии возникают кварки трёх разновидностей, т. е. кварки трёхцветны.

Табл. 5. -Кварковый состав барионов с Jp = 1/2+

Частица Р_

Состав ррп

Частица

sum 0

Состав ппс
п

рпп

Xc+

[рп]с
X0

1рп]Л

sum+Лce

(рЛ)с
sum+

ррЛ

sum0Лce

(пЛ)с
2° ?-

{рп}Х ппХ

п + "Хсо

0

Зхс„

[рХ]с [пХ]с
Н"

рХХ

":

ХХс
EZ

пХХ

s++

"" ее

рсс


ррс

з +

пес
Б+

{рп} с

Scc

Хсс

Примечание. Индекс а и [ ] - означают антисимметризацию, индекс s и { } - симметризацию.

Табл. 6. - Кварковый состав барионов с Jp =3/2

Частица

&+ +

Частица

лГ

&+c

Состав

{ррс} {рпс}
&+
&0

&0c

{ппс}
&-

sum*+

(рЛс)
sum *+

sum*0

{пЛс}
sum*°

sum *0c

(ЛЛс)
sum*-

&++cc

{рсс}
sum*0

&+cc

{псс}
sum*

sum *+cc

{Лсс}
Q-

Q++

{ссс}

Т. о., квантовые числа кварков, введённые на основании теоретич. соображений, получили подтверждение в ряде экспериментов. Кварки постепенно приобретают статус новых Э. ч. Если дальнейшие исследования подтвердят это заключение, то кварки являются серьёзными претендентами на роль истинно Э. ч. для адронной формы материи. До длин ~10-15см кварки выступают как точечные бесструктурные образования. Число известных видов кварков невелико. В дальнейшем оно может, конечно, измениться: нельзя поручиться за то, что при более высоких энергиях не будут обнаружены адроны с новыми квантовыми числами, обязанные своим существованием новым типам кварков. Обнаружение Г -мезонов подтверждает эту точку зрения. Но вполне возможно, что увеличение числа кварков будет небольшим, что общие принципы накладывают ограничения на полное число кварков, хотя эти ограничения пока неизвестны. Бесструктурность кварков также, возможно, отражает лишь достигнутый уровень исследования этих материальных образований. Однако ряд специфич. особенностей кварков даёт нек-рые основания предполагать, что кварки являются частицами, замыкающими цепь структурных составляющих материи.

От всех других Э. ч. кварки отличаются тем, что в свободном состоянии они пока не наблюдались, хотя имеются свидетельства их существования в связанном состоят":. Одной из причин ненаблюдения кварков может быть их очень большая масса, что препятствует их рождению при энергиях совр. ускорителей. Не исключено, однако, что кварки принципиально, в силу специфики их взаимодействия, не могут находиться в свободном состоянии. Существуют доводы теоретич. и эксперимент, характера в пользу того, что силы, действующие между кварками, не ослабляются с расстоянием. Это означает, что для отделения кварков друг от друга требуется бесконечно большая энергия, или, иначе, возникновение кварков в свободном состоянии невозможно. Невозможность выделить кварки в свободном состоянии делает их совершенно новым типом структурных единиц вещества. Неясно, напр., можно ли ставить вопрос о составных частях кварков, если сами кварки нельзя наблюдать в свободном состоянии. Возможно, что в этих условиях части кварков физически вообще не проявляются и поэтому кварки выступают как последняя ступень дробления адронной материи.

Элементарные частицы и квантовая теория поля. Для описания свойств и взаимодействий Э. ч. в современной теории существенное значение имеет понятие физ. поля, к-рое ставится в соответствие каждой частице. Поле есть специфическая форма материи; оно описывается функцией, задаваемой во всех точках (x) пространства-времени и обладающей определёнными трансформац. свойствами по отношению к преобразованиям группы Лоренца (скаляр, спинор, вектор и т. д.) и групп "внутр." симметрии (изотопич. скаляр, изотопич. спинор и т. д.). Электромагнитное поле, обладающее свойствами четырёхмерного вектора Ам(x) (ц = 1, 2, 3, 4),- исторически первый пример физ. поля. Поля, сопоставляемые с Э. ч., имеют квантовую природу, т. е. их энергия и импульс слагаются из множества отд. порций - квантов, причём энергия Ек и импульс pк, кванта связаны соотношением спец. теории относительности: Ек2 = pk2c2+ m2с4. Каждый такой квант и есть Э. ч. с заданной энергией Ек, импульсом pk и массой т. Квантами электромагнитного поля являются фотоны, кванты др. полей соответствуют всем остальным известным Э. ч. Поле, т. о., есть физич. отражение существования бесконечной совокупности частиц - квантов. Спец. математич. аппарат квантовой теории поля позволяет описать рождение и уничтожение частицы в каждой точке х.

Трансформац. свойства поля определяют все квантовые числа Э. ч. Трансформационные свойства по отношению к преобразованиям пространства-времени (группе Лоренца) задают спин частиц. Так, скаляру соответствует спин 0, спинору - спин 1/2, вектору - спин 1 и т. д. Существование таких квантовых чисел, как L, В, I, У, Ch и для кварков и глюонов "цвет", следует из трансформац. свойств полей по отношению к преобразованиям "внутр. пространств" ("зарядового пространства", "изотопического пространства", "унитарного пространства" и т. д.). Существование "цвета" у кварков, в частности, связывается с особым "цветным" унитарным пространством. Введение "внутр. пространств" в аппарате теории - пока чисто формальный приём, к-рый, однако, может служить указанием на то, что размерность физ. пространства-времени, отражающаяся в свойствах Э. ч., реально больше четырёх - размерности пространства-времени, характерной для всех макроскопич. физ. процессов. Масса Э. ч. не связана непосредственно с трансформац. свойствами полей; это дополнит, их характеристика.

Для описания процессов, происходящих с Э. ч., необходимо знать, как различные физ. поля связаны друг с другом, т. е. знать динамику полей. В совр. аппарате квантовой теории поля сведения о динамике полей заключены в особой величине, выражающейся через поля - лагранжиане (точнее, плотности лагранжиана) L. Знание L позволяет в принципе рассчитывать вероятности переходов от одной совокупности частиц к другой под влиянием различных взаимодействий. Эти вероятности даются т. н. матрицей рассеяния (В. Гейзенберг, 1943), выражающейся через L. Лагранжиан L состоит из лагранжиана LO, описывающего поведение свободных полей, и лагранжиана взаимодействия LB3, построенного из полей разных частиц и отражающего возможность их взаимопревращений. Знание LB3 является определяющим для описания процессов с Э. ч.

Вид Lo однозначно определяется трансформац. свойствами полей относит, группы Лоренца и требованием инвариантности относительно этой группы (релятивистская инвариантность). В течение длит, времени не были, однако, известны критерии для нахождения LK, (за исключением электромагнитных взаимодействий), а сведения о взаимодействиях Э. ч., полученные из эксперимента, в большинстве случаев не позволяли осуществить надёжный выбор между различными возможностями. В этих условиях широкое распространение получил феноменологич. подход к описанию взаимодействий, осн. либо на выборе простейших форм L,3, ведущих к наблюдаемым процессам, либо на прямом изучении характерных свойств элементов матрицы рассеяния. На этом пути был достиг