БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431. ч.) частиц, получивших назв. "резонансов". Массы большинства резонансов превышают массу протона. Первый из них Ai (1232) был известен с 1953. Оказалось, что резонансы составляют осн. часть Э. ч.

В 1962 было выяснено, что существуют два разных нейтрино: электронное и мюонное. В 1964 в распадах нейтральных К-мезонов было обнаружено несохранение т. н. комбинированной чётности (введённой Ли Цзундао и Ян Чжэнъ-нином и независимо Л. Д. Ландау в 1956; см. Комбинированная инверсия), означающее необходимость пересмотра привычных взглядов на поведение физ, процессов при операции отражения времени (см. Теорема СРТ).

В 1974 были обнаружены массивные (в 3- 4 протонные массы) и в то же время относительно устойчивые ф-частицы, с временем жизни, необычно большим для резонансов. Они оказались тесно связанными с новым семейством Э. ч.- "очарованных", первые представители к-рого (D°, D+, Ас) были открыты в 1976. В 1975 были получены первые введения о существовании тяжёлого аналога электрона и мюона (тяжёлого лептона г). В 1977 были открыты 1*-частицы с массой порядка десятка протонных масс.

Т. о., за годы, прошедшие после открытия электрона, было выявлено огромное число разнообразных микрочастиц материи. Мир Э. ч. оказался достаточно сложно устроенным. Неожиданными во многих отношениях оказались свойства обнаруженных Э. ч. Для их описания, помимо характеристик, заимствованных из классич. физики, таких, как электрич. заряд, масса, момент количества движения, потребовалось ввести много новых спец. характеристик, в частности для описания странных Э. ч. - странность (К. Нишиджима, М. Гелл-Ман, 1953), "очарованных" Э. ч.- "очарование" (амер. физики Дж. Бьёркен, Ш. Глэшоу, 1964); уже названия приведённых характеристик отражают необычность описываемых ими свойств Э. ч.

Изучение внутр. строения материи и свойств Э. ч. с первых своих шагов сопровождалось радикальным пересмотром многих устоявшихся понятий и представлений. Закономерности, управляющие поведением материи в малом, оказались настолько отличными от закономерностей классич. механики и электродинамики, что потребовали для своего описания совершенно новых теоретич. построений. Такими новыми фундаментальными построениями в теории явились частная (специальная) и общая теория относительности (А. Эйнштейн, 1905 и 1916; см. Относительности теория, Тяготение) и квантовая механика (1924 - 27; Н. Бор, Л. де Бройль, В. Гейзенберг, Э. Шрёдингер, М. Борн). Теория относительности и квантовая механика знаменовали собой подлинную революцию в науке о природе и заложили основы для описания явлений микромира. Однако для описания^ процессов, происходящих с Э. ч., квантовой механики оказалось недостаточно. Понадобился след, шаг - квантование классич. нолей (т. н. квантование вторичное) и разработка квантовой теории поля. Важнейшими этапами на пути её развития были: формулировка квантовой электродинамики (П. Дирак, 1929), квантовой теории (3-распада (Э. Ферми, 1934), положившей начало совр. теории слабых взаимодействий, квантовой мезодинамики (Юкава, 1935). Непосредств. предшественницей последней была т. н. (3-теория ядерных сил (И. Е. Тамм, Д. Д. Иванен-ко, 1934; см. Сильные взаимодействия). Этот период завершился созданием последовательного вычислит, аппарата квантовой электродинамики (С. Томонага, Р. Фейнман, Ю. Швингер; 1944-49), осн. на использовании техники перенормировки (см. Квантовая теория поля). Эта техника была обобщена впоследствии применительно к др. вариантам квантовой теории поля.

Квантовая теория поля продолжает развиваться и совершенствоваться и является основой для описания взаимодействий Э. ч. У этой теории имеется ряд существенных успехов, и всё же она ещё очень далека от завершённости и не _может претендовать на роль всеобъемлющей теории Э. ч. Происхождение многих свойств Э. ч. и природа присущих им взаимодействий в значит, мере остаются неясными. Возможно, понадобится ещё не одна перестройка всех представлений и гораздо более глубокое понимание взаимосвязи свойств микрочастиц и геометрич. свойств пространства-времени, прежде чем теория Э. ч. будет построена.

Основные свойства элементарных частиц. Классы взаимодействий. Все Э. ч. являются объектами исключительно малых масс и размеров. У большинства из них массы имеют порядок величины массы протона, равной 1,6-10-24г (заметно меньше лишь масса электрона: 9-10-28 г). Определённые из опыта размеры протона, нейтрона, я-мезона по порядку величины равны 10-13см. Размеры электрона и мюона определить не удалось, известно лишь, что они меньше 10-15 см. Микроскопич. массы и размеры Э. ч. лежат в основе квантовой специфики их поведения. Характерные длины волн, к-рые следует приписать Э. ч. в квантовой теории (П/тс, где П- постоянная Планка, т - масса частицы, с - скорость света) по порядку величин близки к типичным размерам, на к-рых осуществляется их взаимодействие (напр., для л;-мезона h/me ss =1,4-10-13см). Это и приводит к тому, что квантовые закономерности являются определяющими для Э, ч.

Наиболее важное квантовое свойство всех Э. ч. - их способность рождаться и уничтожаться (испускаться и поглощаться) при взаимодействии с др. частицами. В этом отношении они полностью аналогичны фотонам. Э. ч.- это специфич. кванты материи, более точно - кванты соответствующих физ. полей (см. ниже). Все процессы с Э. ч. протекают через последовательность актов их поглощения и испускания. Только на этой основе можно понять, напр., процесс рождения я+-мезона при столкновении двух протонов (р + р-" Р + п + я+) или процесс аннигиляции электрона и позитрона, когда взамен исчезнувших частиц возникают, напр., два V-кванта (е* + е~ -" Y + V). Но и процессы упругого рассеяния частиц, напр. е~ + р = е-+ р, также связаны с поглощением начальных частиц и рождением конечных частиц. Распад нестабильных Э. ч. на более лёгкие частицы, сопровождаемый выделением энергии, отвечает той же закономерности и является процессом, в к-ром продукты распада рождаются в момент самого распада и до этого момента не существуют. В этом отношении распад Э. ч. подобен распаду возбуждённого атома на атом в осн. состоянии и фотон. Примерами распадов Э. ч. могут служить: п = р + е- + ve; л+ = м+ + vм; К+ = л* + л° (знаком "тильда" над символом частицы здесь и в дальнейшем помечены соответствующие античастицы).

Различные процессы с Э. ч. заметно отличаются по интенсивности протекания. В соответствии с этим взаимодействия Э. ч. можно феноменологически разделить на неск. классов: сильные, электромагнитные и слабые взаимодействия. Все Э. ч. обладают, кроме того, гравитационным взаимодействием.

Сильные взаимодействия выделяются как взаимодействия, к-рые порождают процессы, протекающие с наибольшей интенсивностью среди всех остальных процессов. Они приводят и к самой сильной связи Э. ч. Именно сильные взаимодействия обусловливают связь протонов и нейтронов в ядрах атомов и обеспечивают исключительную прочность этих образований, лежащую в основе стабильности вещества в земных условиях.

Электромагнитные взаимодействия характеризуются как взаимодействия, в основе к-рых лежит связь с электромагнитным полем. Процессы, обусловленные ими, менее интенсивны, чем процессы сильных взаимодействий, а порождаемая ими связь Э. ч. заметно слабее. Электромагнитные взаимодействия, в частности, ответственны за связь атомных электронов с ядрами и связь атомов в молекулах.

Слабые взаимодействия, как показывает само название, вызывают очень медленно протекающие процессы с Э. ч. Иллюстрацией их малой интенсивности может служить тот факт, что нейтрино, обладающие только слабыми взаимодействиями, беспрепятственно пронизывают, напр., толщу Земли и Солнца. Слабые взаимодействия обусловливают также медленные распады т. н. квазистабильных Э. ч. Времена жизни этих частиц лежат в диапазоне 10-8 -10-10 сек, тогда как типичные времена для сильных взаимодействий Э. ч. составляют 10-23 - 10-24сек.

Гравитационные взаимодействия, хорошо известные по своим макроскопич. проявлениям, в случае Э. ч. на характерных расстояниях ~10-13 см дают чрезвычайно малые эффекты из-за малости масс Э. ч.

Силу различных классов взаимодействий можно приближённо охарактеризовать безразмерными параметрами, связанными с квадратами констант соответствующих взаимодействий. Для сильных, электромагнитных, слабых и гравитационных взаимодействий протонов при средней энергии процесса ~1 Гэв эти параметры соотносятся как 1 : 10-2 : 10-10 : 10-38, Необходимость указания средней энергии процесса связана с тем, что для слабых взаимодействий безразмерный параметр зависит от энергии. Кроме того, сами интенсивности различных процессов по-разному зависят от энергии. Это приводит к тому, что относит, роль различных взаимодействий, вообще говоря, меняется с ростом энергии взаимодействующих частиц, так что разделение взаимодействий на классы, осн.на сравнении интенсивностей процессов, надёжно осуществляется при не слишком высоких энергиях. Разные классы взаимодействий имеют, однако, и др. специфику, связанную с различными свойствами их симметрии (см. Симметрия в физике), к-рая способствует их разделению и при более высоких энергиях. Сохранится ли