БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

86959129216522494310-тонного слитка до 16 ч. Производительность Э. п. G (кг/ч) подсчитывается по эмпирич. формуле G = D, где D - сторона квадрата (блюминговый слиток), широкая грань (слябинговый слиток), диаметр круглого слитка сплошного сечения или наружный диаметр полого слитка (мм). В СССР действуют Э. п. мн, типов в специализир. цехах металлургич. з-дов (масса сортового слитка до 8 т, листового до 20-40 т) и з-дов тяжёлого машиностроения (кузнечные слитки до 200 т). Вслед за СССР Э. п. были построены в Великобритании, ФРГ, США и Японии. По сов. лицензии Э. п. сооружены и эксплуатируются во Франции, Японии, Швеции, НРБ, ПНР, СРР, СФРЮ и др. странах. В СССР, США и ФРГ создаются автоматизир. системы управления (АСУ) работой Э. п.

Лит.: Электрошлаковые печи, К., 1976, Б. И. Медовар.

ЭЛЕКТРОШЛАКОВАЯ СВАРКА, шлаковая электросварка; см. Сварка.

ЭЛЕКТРОШЛАКОВЫЙ ПЕРЕПЛАВ, электрометаллургич. процесс, при к-ром металл (расходуемый электрод) переплавляется в ванне электропроводного синтетич. шлака под действием тепла, выделяющегося в шлаке при прохождении через него электрич. тока. Э. п., существенно повышающий качество металлов и сплавов, разработан в нач. 50-х гг. 20 в. в Ин-те электросварки им. Е. О. Па-тона АН УССР на основе электрошлакового сварочного процесса (см. Сварка). Расходуемый электрод представляет собой отливку, прокатное изделие или поковку из металла, получ. в мартеновской, дуговой, вакуумноиндукц. печах или кислородном конвертере. В процессе Э. п. темп-pa шлака, состоящего из СаF2, CaO, SiC2, Аl2Оз и др. компонентов, превышает 2500 °С. Капли жидкого электродного металла проходят через слой шлака и образуют под ним слой металла, из к-рого при последоват. затвердевании в водоохлаждаемом кристаллизаторе формируется слиток (рис.).

По мере рплавления расходуемый электрод подаётся в шлаковый слой, непрерывно восполняя объём кристаллизующегося металла. Шлак является рафинирующей средой. Электрошлаковое рафинирование металла происходит в плёнке жидкого металла на оплавляющемся конце электрода, при прохождении капель металла через шлаковую ванну и на поверхности раздела шлаковой и металлич. ванн. Изменяя состав шлака и температурный режим процесса, осуществляют избират. рафинирование металла. В результате Э. п. содержание серы снижается в 2-5 раз, кислорода и неметаллич. включений в 1,5-2,5 раза. Слиток характеризуется плотной направленной микроструктурой, свободен от дефектов литейного и усадочного происхождения. Химич. и структурная однородность слитка обусловливает изотропность физич. и механич. свойств металла в литом и деформированном виде. Способом Э. п. получают слитки массой от десятков г до 200 т практически любой нужной формы, определяемой формой кристаллизатора. Наряду с передельными (для прокатки сортовых профилей, труб и листа) и кузнечными (для ковки, прессования и штамповки) слитками производят фасонные отливки (коленчатые валы, корпуса запорной арматуры, сосуды давления, зубчатые колёса и др.). Э. п. применяется в чёрной металлургии (шарикоподшипниковые, конструкц., нержавеющие, инструментальные стали, жаропрочные сплавы), цветной металлургии (хромистая бронза, никслемедные сплавы), тяжёлом машиностроении (теплоустойчивые, высокопрочные штамповые, валковые стали). Процесс запатентован и используется по сов. лицензии во мн. странах.

Лит : Электрошлаковый переплав, М., 1963; Л а т а ш Ю. В., М е д о в а р Б. И., Электрошлаковый переплав, М., 1970.

Б. И. Медовар.

ЭЛЕКТРОЭНЕРГЕТИКА, ведущая составляющая часть энергетики, обеспечивающая электрификацию х-ва страны на основе рационального производства и распределения электроэнергии. Э. имеет важное значение в х-ве любой промышленно развитой страны, что объясняется такими преимуществами электроэнергии перед энергией др. видов, как относит, лёгкость передачи на большие расстояния, распределения между потребителями, а также преобразования в др. виды энергии (механич., тепловую, химич., световую и др.). Отличит, чертой электроэнергии является одновременность её генерирования и потребления.

Осн. часть электроэнергии вырабатывается крупными электростанциями: тепловыми (ТЭС), гидравлич. (ГЭС), атомными (АЭС). Электростанции, объединённые между собой и с потребителями высоковольтными линиями электропередачи (ЛЭП), образуют электрические системы.

В Советском Союзе вопросы развития Э. всегда были в числе осн. вопросов развития нар. х-ва. Сов. Э. занимает передовые позиции в мире.

Электрификация страны базируется, с одной стороны, на науч. достижениях, с другой - на успехах пром-сти. В нач. 20-х гг. 20 в. в плане ГОЭЛРО были чётко сформулированы две ведущие тенденции Э.: концентрация производства электроэнергии путём сооружения крупных районных электростанций и централизация распределения электроэнергии. Становление Э. определялось, с одной стороны, созданием электростанций и топливной базы для них, сооружением линий электропередачи и разработкой электрич. аппаратуры и энергетич. оборудования, с другой - развитием теоретич. основ электротехники - необходимого условия для научного обоснования энергетич. стр-ва. В этих целях были осуществлены важные исследования в области техники высоких напряжений, теории устойчивости электрических систем, разработаны методы расчёта мощных генераторов, трансформаторов и др. электрич. машин, электропривода, электрич. аппаратов; создана электротехнология, внедрено автоматизир. управление электрич. системами, использованы методы физ. и матем. моделирования при расчёте и изучении электроэнергетич. систем.

В СССР осн. науч. исследования в области Э. проводятся в Гос. н.-и. энергетич. ин-те им. Г. М. Кржижановского (ЭНИН, Москва), НИИ Энергосеть-проект (Москва), Всесоюзном электротехнич. ин-те им. В. И. Ленина (ВЭИ, Москва), Всесоюзном НИИ постоянного тока (НИИПТ, Ленинград), Всесоюзном НИИ источников тока (ВНИИТ, Москва), Всесоюзном НИИ электромашиностроения (Ленинград), Сиб. энергетич. ин-те СО АН СССР (Иркутск), Ин-те электродинамики АН УССР (Киев), мн. вузах (Моск. энергетич. ин-те, Ленингр. политехнич. и электротехнич. ин-тах) и др. Существ, вклад в развитие Э. внесли сов. учёные Г. М. Кржижановский, А. В. Винтер, Р. Э. Классон, В. Ф. Миткевич, М. П. Костенко, Л. Р. Нейман, М. А. Шателен, А. А. Горев, П. С. Жданов, С. А. Лебедев, К. А. Круг, Г. Н. Петров и др., а также И. А. Глебов, Д. Г. Жимерин, Н. С. Лидорёнко, М. В. Костенко, В. И. Попков, В. М. Тучкевич и мн. другие.

На базе науч. достижений Э. созданы электротехническая промышленность и энергетическое машиностроение, которые производят практически все осн. виды электротехнич. и энергетич. оборудования: котло- и турбоагрегаты, электродвигатели и электромашинные генераторы, трансформаторы, электрические аппараты, средства автоматики и защиты, оборудование для ЛЭП. Значительно возрос уровень проектирования энергетич. объектов и эксплуатации электроэнергетич. систем, разработаны методы достижения совместной устойчивой работы электрич. сетей большой протяжённости. Принцип концентрации реализован при сооружении тепловых электростанций единичной мощностью до 3 Гвт (Криворожская ГРЭС-2 и др.), гидроэлектростанций мощностью 4- 6 Гвт (Братская, Красноярская и др.), атомных электростанций мощностью 4 Гвт (Ленинградская) и др.

Развитие Э. предусматривает оптимальное соотношение между мощностью тепловых и гидроэлектрич. станций. В СССР на долю ТЭС приходится св. 80% всей производимой электроэнергии. В европ. р-нах страны ГЭС всё больше используют в качестве манёвренных и резервных источников электроэнергии, позволяющих покрывать пики электрич. нагрузки в течение суток и обеспечивающих устойчивую работу электроэнергетич. х-ва страны. В Сибири и Ср. Азии осуществляется и предусматривается сооружение мощных каскадов ГЭС, важная задача к-рых - комплексное использование водных ресурсов в целях удовлетворения нужд как Э., так и водного транспорта, водоснабжения, ирригации, рыбного х-ва. Особенность электроэнергетики СССР - комбинир. произ-во электроэнергии и тепла на теплоэлектроцентралях. Более '/з общей потребности в тепле удовлетворяется за счёт теплофикации, что позволяет существенно улучшить сан. состояние возд. бассейна городов, получить значит, экономию топлива. Создание материальной базы Э. идёт, с одной стороны, в направлении стр-ва АЭС, ТЭЦ, работающих на органич. топливе, манёвренных ТЭС и ГЭС, а также гидроаккумулирующих установок в Европ. части страны, и, с другой стороны,- по пути расширения стр-ва ТЭС и ГЭС в вост. р-нах, где для произ-ва электроэнергии выгодно использовать дешёвые гидроресурсы и угли Сев. Казахстана и Сибири. Наряду с этим проводятся исследования и пром. эксперименты в области новых методов получения электроэнергии (реакторы на быстрых нейтронах, магнитогидродинамич. генераторы и др.). Развитие принципа централизации электроснабжения логически привело вначале к образованию районных, затем 9 объединённых электроэнергетич. систем и впоследствии к формированию Единой электроэнергетич. системы (ЕЭЭС) Европ. части СССР, а затем всей страны, как важнейшей основы планомерной электрификации. С 1976 ЕЭЭС СССР работает совместно с электроэнергетич. системами стран