БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431

Разновидностью электроконтактной обработки является электроабразивная обработка - обработка абразивным инструментом (в т. ч. алмазно-абразивным), изготовленным на основе проводящих материалов. Введение в зону обработки электрич. энергии значительно сокращает износ инструмента.

Электроконтактные станки по кинематике не отличаются практически от соответствующих металлорежущих станков; имеют мощный источник тока.

Магнитоимпульсная обработка применяется для пластич. деформирования металлов и сплавов (обжатие и раздача труб, формовка трубчатых и листовых заготовок, калибровка и т. п.) и основана на непосредственном преобразовании энергии меняющегося с большой скоростью магнитного поля, возбуждаемого, напр., при разряде батареи мощных конденсаторов на индуктор, в механич. работу при взаимодействии с проводником (заготовкой) (рис. 7). Преимущества метода - отсутствие движущихся и трущихся частей в установках, высокая надёжность и производительность, лёгкость управления и компактность, наличие лишь одного инструмента - матрицы или пуансона (роль другого выполняет поле) и др.; недостатки - относительно невысокий кпд, затруднительность обработки заготовок с отверстиями или пазами (мешающими протеканию тока) и большой толщины.

Электрогидравлическ а я обработка (гл. обр. штамповка). Основана на использовании энергии гидравлического удара при мощном элек-трич. (искровом) разряде в жидком диэлектрике (рис. 8). При этом необходимо вакуумирование полости между заготовкой и матрицей, поскольку из-за огромных скоростей движения заготовки к матрице воздух не успевает уйти из полости и препятствует плотному прилеганию заготовки к матрице. Метод прост, надёжен, но обладает небольшим кпд, требует высоких электрич. напряжений и не всегда даёт воспроизводимые результаты.

К электромеханич. обработке относится также ультразвуковая обработка.

Лучевая обработка. К лучевым методам обработки относится обработка материалов электронным пучком и световыми лучами (см. Лазерная технология). Электроннолучевая обработка осуществляется потоком электронов высоких энергий (до 100 кэв). Таким путём можно обрабатывать все известные материалы (совр. электронная оптика позволяет концентрировать электронный пучок на весьма малой площади, создавать в зоне обработки огромные плотности мощности). Электроннолучевые станки могут выполнять резание (в т. ч. прошивание отверстий) и сварку с большой точностью (до 50 А). Основой электроннолучевого станка является электронная пушка. Станки имеют также устройства контроля режима обработки, перемещения заготовки, вакуумное оборудование. Из-за относительно высокой стоимости, малой производительности, технич. сложности станки используются в осн. для выполнения прецизионных работ в микроэлектронике, изготовления фильер с отверстиями малых (до 5 мкм) диаметров, работ с особочистыми материалами.

К электрофизич. методам обработки относится также плазменная обработка.

ЭЛЕКТРОХИМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ Основаны на законах электрохимии. По используемым принципам эти методы разделяют на анодные и катодные (см. Электролиз), по технология, возможностям - на поверхностные и размерные.

Поверхностная электрохимическая обработка. Практич. использование электро-хим. методов началось с 30-х гг. 19 в. (гальваностегия и гальванопластика, см. Гальванотехника). Первый патент на электролитическое полирование был выдан в 1910 Е. И. Шпиталъскому. Суть метода состоит в том, что под действием электрич. тока в электролите происходит растворение материала анода (анодное растворение), причём быстрее всего растворяются выступающие части поверхности, что приводит к её выравниванию. При этом материал снимается со всей поверхности, в отличие от механич. полирования, где снимаются только наиболее выступающие части. Электролитич. полирование позволяет получить поверхности весьма малой шероховатости. Важное отличие от механич. полирования - отсутствие к.-л. изменений в структуре обрабатываемого материала. См. статьи Анодирование, Пассивирование.

Размерная электрохимическая обработка. К этим методам обработки относят анодно-гидравлич. и анодно-механиче-скую обработку.

Анодно-гидравлическая обработка впервые была применена в Сов. Союзе в кон. 20-х гг. для извлечения из заготовки остатков застрявшего сломанного инструмента. Скорость анодного растворения зависит от расстояния между электродами: чем оно меньше, тем интенсивнее происходит растворение. Поэтому при сближении электродов поверхность анода (заготовка) будет в точности повторять поверхность катода (инструмента). Однако процессу растворения мешают продукты электролиза, скапливающиеся в зоне обработки, и истощение электролита. Удаление продуктов растворения и обновление электролита осуществляются либо механич. способом (анодно-механич. обработка), либо прокачиванием электролита через зону обработки (рис. 9).

Этим методом, подбирая электролит, можно обрабатывать практически любые токопроводящие материалы, обеспечивая высокую производительность в сочетании с высоким качеством поверхности. Используемые для анодно-гидравлич. обработки электрохимич. станки просты в обращении, используют низковольтное (до 24 в) электрооборудование. Однако значит, плотности тока (до 200 а/см2) тре-

буют мощных источников тока, больших расходов электролита (иногда до '/3 площади цехов занимают баки для электролита).

Комбинированные методы обработки сочетают в себе преимущества электрофизич. и электрохимич. методов. Используемые сочетания разнообразны. Напр., сочетание анодно-механич. обработки с ультразвуковой в нек-рых случаях повышает производительность в 20 раз. Существующие электроэрозионно-ультразвуковые станки позволяют использовать оба метода как раздельно, так и вместе. Лит.: В и ш н и ц к и и А. Л., Ясногородский И. 3., Григорчук И. П., Электрохимическая и электромеханическая обработка металлов, Л., 1971; Электрофизические и электрохимические методы размерной обработки материалов, М., 1971; Черепанов Ю. П., Самецкий Б. И.. Электрохимическая обработка в машиностроении, М., 1972; Новое в электрофизической и электрохимической обработке материалов, Л., 1972. Д.Л.Юдин. ЭЛЕКТРОФОН (от электро... и ...фон), бытовое устройство для воспроизведения звука с граммофонной пластинки; в. принципиальном отношении отличается от граммофона тем, что в Э. механич. колебания иглы звукоснимателя преобразуются в электрич. колебания; последние усиливаются усилителем звуковых частот и затем преобразуются в звук электроакустич. системой (включающей 1 или неск. электродинамических громкоговорителей). Э. рассчитан на воспроизведение моно-, стерео- или квадрафонической грамзаписи. Качеств, показатели Э., а также удобства его использования определяются классом Э. Напр., выпускаемые в СССР Э. в соответствии; с ГОСТом, устанавливающим их осн. технич. характеристики (диапазон воспроизводимых частот, коэфф. нелинейных искажений и т. д.), подразделяются на

Э. высшего, 1-го, 2-го и 3-го классов. Совр. Э. высшего класса создают звучание, в к-ром слушатель совершенно не ощущает помех и различных искажений, возникающих при воспроизведении грамзаписи, и обеспечивают макс, удобства эксплуатации.

Лит.: Аполлонова Л. П., Ш у м ов а Н. Д., Механическая звукозапись, М.- Л., 1964; ГОСТ 11157-74. Электрофоны. Общие технические условия, М., 1974. С. Л. Мишенков.

ЭЛЕКТРОФОРЕЗ (от электро... и греч. phoresis - несение, перенесение), направленное движение коллоидных частиц или макроионов под действием внеш. электрич. поля. Э. был открыт Ф.Ф. Рейс-сом в 1807 и считается важнейшей разновидностью электрокинетических явлений. Скорость v движущихся частиц приближённо связана с напряжённостью электрич. поля Е ур-нием Смолуховского:
[30-08-3.jpg]

где кпд - вязкость среды, D - диэлек-трич. проницаемость, Э - электрокинетический потенциал. Э. используют в электрохимии для изучения двойного электрического слоя, адсорбции ионов на поверхности, в медицине (см. Электрофорез лекарственный). В пром-сти Э. используют для выделения каучука из латекса, очистки воды, отделения каолина от песка и др. В биохимии Э. служит для анализа, разделения и очистки биополимеров (гл. обр. белков), бактериальных клеток, вирусов, а также аминокислот, витаминов и др. Практическое применение Э. началось после создания швед, учёным А. Тиселиусом спец. аппарата для фронтального (или свободного) Э. белков в растворе (1937). Наиболее широкое распространение нашли электрофоретич. методы с использованием инертных носителей (бумаги, гелей и др.), получившие общее название зонального Э., т. к. фракции разделяемых веществ образуют в толще носителя отдельные, несмешивающиеся зоны. Э. часто сочетают с др. методами разделения биоорганич. соединений (напр., с хроматографией). Разработана техника концентрирования электрофоретич. зон биополимеров в гелях, значительно повышающая разрешающую способность метода (диск-Э.). Применение реакции антиген-антитело в сочетании с Э. послужило основой для создания метода иммуно-Э. Электрофоретич. анализ биол. жидкостей, напр, сыворотки крови для исследования гл. обр. белков, широко используют