БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431мышц в области контакта с проводником тока (напр., мышц верх, конечности); при силе тока в 15 ма сокращения мышц настолько сильны, что не позволяют разжать пальцы, схватившие проводник (т. н. неотпускающий ток); при 25 ма и более возникают судороги всех мышц тела (в т. ч. и дыхательных, что создаёт угрозу смерти от удушья), нарушения деятельности нервной и сердечно-сосудистой систем, потеря сознания, клинич. смерть, что требует применения реанимационных мер. Переменный ток порядка 100 ма воздействует непосредственно на миокард, вызывая фибрилляцию сердца, при к-рой для восстановления ритмичных сокращений сердца применяют дефибриллятор. Переменный ток напряжением до 450- 500 в более опасен, чем постоянный; при более высоком напряжении постоянный ток опаснее переменного. При действии тока напряжением выше 350 в возникают местные изменения - электроожоги 3-й и 4-Й степени (см. Ожог) в местах входа и выхода тока; по протяжению они различны: от точечных "меток" до обугливания конечности.

Судьба пострадавшего зависит от своевременности оказания первой помощи, к-рая включает быстрое освобождение его от действия тока, в тяжёлых случаях - искусств, дыхание и массаж сердца через грудную клетку. После Э. необходима госпитализация для лечения электроожогов и нервно-сосудистых нарушений. Профилактика Э.: строгое соблюдение правил техники безопасности при монтаже, эксплуатации и ремонте электроустановок.

Лит.: Береэнева В. И., Электротравма, электроожоги и их лечение, Л., 1964. В. Ф. Пожариский.

ЭЛЕКТРОУГЛИ, город (с 1956) в Ногинском р-не Московской обл. РСФСР. Ж.-д. станция в 35 км к В. от Москвы. 18 тыс. жит. (1974). Объединение "Электроугли", комбинат керамических изделий, з-д "Техуглерод". Вечерний индустриальный и машиностроительный техникумы.

ЭЛЕКТРОФАРФОР, диэлектрик, используемый для высоко- и низковольтных линий электропередач и в произ-ве разнообразного электротехнич. оборудования; разновидность электротехнической керамики. Технология Э. (см. Фарфор) позволяет изготовлять прессованием, пластич. формованием и отливкой изделия разнообразной формы размером от неск. мм до 2-3 м. Наряду с полевошпатовым Э. (осн. вид Э.) выпускаются глинозёмный, цирконовый и ашаритовый Э. Характеристики Э. зависят от фазового состава (содержания кварца, муллита, корунда, циркона и стекловидной фазы): предел прочности при статич. изгибе 60-140 Мн/м2 (600- 1400 кгс/см2); электрич. прочность при 500 гц 28-40 кв/мм, удельное объёмное электрич. сопротивление при 20 °С 1*10'°-3,74*1012ом-м, диэлектрич. проницаемость при 50 гц 6,3-8,2. Высокие требования к Э. обусловливают использование для его произ-ва лишь чистого и стабильного по составу керамич. сырья (каолинов, глин, кварцевого песка, циркона и др.).

ЭЛЕКТРОФИЗИОЛОГИЯ, раздел физиологии, изучающий различные электрич. явления в живых тканях организма (биоэлектрич. потенциалы), а также механизм действия на них электрич. тока. Первые науч. сведения о "животном электричестве" были получены в 1791 Л. Галъвани. Он обнаружил, что замыкание металлич. проводником оголённых нерва и мышцы лягушки сопровождается сокращением последней, и истолковал этот факт как результат действия возникающего в живой ткани электричества. Этот опыт вызвал возражения А. Вольты, к-рый указал, что раздражение мышцы может быть связано с появлением электричества в состоящей из разнородных металлов внешней цепи. Гальвани воспроизвёл также сокращение мышцы без участия металлич. проводника (путём прикосновения повреждённого участка нерва к мышце) и с несомненностью показал, что источником электричества является живая ткань. В 1797 опыты Гальвани подтвердил нем. учёный А. Гумбольдт. Итал. физиолог К. Маттеуччи в 1837 доказал наличие разности электрич. потенциалов между повреждённой и неповреждённой частями мышцы. Он обнаружил также, что мышца при её сокращении создаёт электрич. ток, достаточный для раздражения др. нервно-мышечного соединения. Э. Дюбуа-Реймон при помощи более совершенной методики в 1848 подтвердил, что повреждение мышцы или нерва всегда сопровождается появлением разности потенциалов, уменьшающейся при возбуждении. Тем самым был открыт потенциал действия ("отрицательное колебание", по терминологии того времени) - один из осн. видов электрич. процессов в возбудимых тканях. Дальнейшее развитие Э. было предопределено созданием технич. средств для регистрации слабых и кратковременных электрич. колебаний. В 1888 нем. физиолог Ю. Бернштейн предложил т. н. дифференциальный реотом для изучения токов действия в живых тканях, к-рым определил скрытый период, время нарастания и спада потенциала действия. После изобретения капиллярного электрометра, применяемого для измерения малых эдс, такие исследования были повторены более точно франц. учёным Э. Ж. Мареем (1875) на сердце и

А. Ф. Самойловым (1908) на скелетной мышце. Н. Е. Введенский (1884) применил телефон для прослушивания потенциалов действия. Важную роль в развитии Э. сыграл сов. физиолог В. Ю. Чаговец, впервые применивший в 1896 теорию электролитич. диссоциации для объяснения механизма появления электрич. потенциалов в живых тканях. Бернштейн сформулировал в 1902 осн. положения мембранной теории возбуждения, развитые позднее англ, учёными П. Бойлом и Э. Конуэем (1941), А. Ходжкином, Б. Кацем и А. Хаксли (1949). В нач. 20 в. для электрофизиол. исследований был использован струнный гальванометр, позволивший в значит, мере преодолеть инерционность др. регистрирующих приборов; с егопомощью В. Эйнтховен и Самойлов получили подробные характеристики электрич. процессов в различных живых тканях. Неискажённая регистрация любых форм биоэлектрич. потенциалов стала возможной лишь с введением в практику Э. (30-40-е гг. 20 в.) электронных усилителей и осциллографов (Г. Бишоп, Дж. Эрлангер и Г. Гассер, США), составляющих основу электрофизиол. техники. Использование электронной техники позволило осуществить отведение электрич. потенциалов не только от поверхности живых тканей, но и из глубины при помощи погружаемых электродов (регистрация электрич. активности отд. клеток и внутриклеточное отведение). Позднее в Э. стала широко использоваться также электронно-вычислит. техника, позволяющая выделять очень слабые электрич. сигналы на фоне шумов, проводить автоматич. статистич. обработку большого кол-ва электрофизиол. данных, моделировать электрофизиол. процессы и т. д. Значит, вклад в развитие Э. внесли также рус. и сов. физиологи - И. Г. Тарханов, Б. Ф. Вериго, В. Я. Данилевский, Д. С. Воронцов, А. Б. Коган, П. Г. Костюк, М.Н. Ливанов и др.

Электрофизиол. метод регистрации электрич. потенциалов, возникающих во время активных физиол. функций во всех без исключения живых тканях,- наиболее удобный и точный метод исследования этих процессов, измерения их временных характеристик и пространств, распределения, т. к. электрич. потенциалы лежат в основе механизма генерации таких процессов, как возбуждение, торможение, секреция. Вместе с тем электрич. ток - наиболее универсальный раздражитель для живых структур; хим., механич. и др. раздражители при действии на ткани также трансформируются на клеточных мембранах в электрич. изменения. Поэтому электрофизиол. методы широко используются во всех разделах физиологии для вызова и регистрации деятельности различных органов и систем. Соответственно они широко применяются также в патофизиол. исследованиях и в клинич. практике для определения функцион. нарушений жизненных функций. Диагностич. значение приобрели различные электрофизиол. методы - электрокардиография, электроэнцефалография , электромиогра-фия, электроретгшография, электродермография (регистрация изменений электрич. потенциалов кожи) и др.

Осн. проблемы совр. Э.: изучение физико-хим. процессов на клеточной мембране, приводящих к появлению электрич. потенциалов, и их изменение во

время активных физиол. процессов (см. Биоэлектрические потенциалы, Возбуждение, Торможение, Импульс нервный), а также биохим. процессов, поставляющих энергию для переноса ионов через мембрану и создания ионных градиентов - основы генерации таких потенциалов; исследование мол. структуры мембранных каналов, к-рые избирательно пропускают через мембрану те или иные ионы и тем самым создают различные формы активных клеточных реакций; моделирование биоэлектрич. явлений на искусств, мембранах. См. также ст. Физиология.

Лит.: Гальвани А., Вольта А., Избранные работы о животном электричестве, М.- Л., 1937; Брейзье М., Электрическая активность нервной системы, пер. с англ., М., 1955; Беритов И. С., Общая физиология мышечной и'нервной системы, 3 изд., т. 1 - 2, М., 1959 - 66; Воронцов Д. С., Общая электрофизиология, М., 1961; X о д ж к и н А.,'Нервный импульс, пер. с англ., М., 1965; Кат ц Б., Нерв, мышца и синапс, пер. с англ., М., 1968; Ходоров Б. И., Общая физиология возбудимых мембран,' М., 1975 (Руководство по физиологии); КостюкП. Г., Физиология центральной нервной системы, 2 изд., К., 1977; Erlanger J., G a s s e r H. S., Electrical signs of nervous activity, Phil., 1937; Schaefer H., Elektrophy-siologie, Bd 1 - 2, W., 1940 - 42; Hubbard J., Llinas R., Quastel D., Electrophysiological analysis of synaptic transmission, L., 1969 П. Г.