БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431ический бот", показало, с одной стороны, принципиальную возможность его практич. применения, а с другой - необходимость создания более экономичного по сравнению с гальванич. элементами источника электроэнергии. Таким источником стал электромашинный генератор, прообразом к-рого была униполярная машина Фарадея (1831). Первыми 'практически пригодными электромашинными генераторами были магнитоэлектрич. генераторы, в к-рых магнитное поле создавалось постоянными магнитами, а якорями служили массивные индуктивные катушки (Якоби, 1842). В 1851 нем. учёный В. Зинстеден предложил заменить постоянные магниты электромагнитами, катушки к-рых питались от самостоят, магнитоэлектрич. генераторов. Дальнейшее совершенствование конструкции электромашинного генератора связано с использованием для возбуждения обмотки электромагнита тока самого генератора. Такие генераторы с самовозбуждением были предложены почти одновременно дат. учёным С. Хиортом (1854), англ, инженерами К. и С. Варли (1867), А. Йедликом, Ч. Уитстоном, Э, В. Сименсом. Пром. произ-во генераторов было начато в 1870 в Париже после того, как 3. Т. Грамм впервые применил в генераторе с самовозбуждением кольцевой шихтованный якорь, принципиальная конструкция к-poro была предложена для электродвигателя в 1860 А. Пачинотти. Генератор Грамма работал не только в генераторном, но и в двигат. режиме, что положило начало практич. внедрению принципа обратимости электрич. машин (открытому Э. X. Ленцем, 1832-38) и позволило значительно расширить область использования электрич. машин. Последующее совершенствование машин постоянного тока шло по пути улучшения их конструктивных элементов - замена кольцевого якоря барабанным (Ф. Хефнер-Алътенек, 1873), усовершенствование шихтованных якорей (амер. изобретатель X. Максим, 1880). введение компенсац. обмотки (1884), дополнит, полюсов (1885) и др. К 80-м гг. 19 в. электрич. машины постоянного тока приобрели осн. конструктивные черты совр. машин. Их совершенствованию способствовало открытие закона о направлении индукционных токов (см. Ленца правило), обнаружение и исследование противоэдс (Якоби, 1840) и реакции якоря (Ленц, 1847), разработка методов расчёта электрич. цепей (Г. Р. Кирхгоф, 1847) и магнитных цепей (англ, учёный Дж. Гопкинсон, нач. 80-х гг.), изучение магнитных свойств железа (А. Г. Столетов, 1871) и др. К кон. 70-х гг. относятся работы Дж. К. Максвелла, сформулировавшего уравнения (см. Максвелла уравнения), являющиеся основой совр. учения об электромагнитном поле.

Наряду с электромашинными генераторами продолжали совершенствоваться хим. источники тока. Значит, шагом в этом направлении было изобретение свинцового аккумулятора (франц. физик Г. Планте, 1859). Усовершенствованная конструкция этого аккумулятора к 80-м гг. уже имела все осн. элементы совр. аккумуляторов.

Создание надёжных источников тока сделало возможным удовлетворение возросших потребностей в электрич. энергии для практич. целей. Дальнейшее развитие Э. связано с возникновением электротехнической промышленности и массовым распространением электрич. освещения, к-рое в 50-70-х гг. 19 в. заменило газовое. Идея применения электрической энергии для освещения была высказана Петровым в 1802 после открытия дуги электрической. Первыми электрич. источниками света были разнообразные дуговые угольные лампы, среди к-рых наиболее дг.пёвой и простой была •"свеча Яблочкова" (П. Н. Яблочков, 1876). В 1870-75 А. Н. Лодыгин разработал неск. типов ламп накаливания, усовершенствованных позднее Т. А. Эдисоном и получивших преимуществ, распространение к 90-м гг. 19 в. Достижения в создании и применении электрич. источников света оказали существ, влияние на становление и развитие светотехники. С распространением электрич. освещения связано создание электроэнергетич. систем. Уже в первых осветительных устройствах Яблочкова имелись все осн. элементы энергосистем: первичный двигатель, генератор, линия электропередачи, трансформатор, приёмник энергии.

Начало применению электроэнергии для технологич. целей положили ещё работы Якоби (1838), предложившего использовать электрич. ток для получения металлич. копий и для нанесения металлич. покрытий (см. Гальванотехника).

Но расширение области практич. использования электрич. энергии стало возможно лишь в 70-80-е гг. 19 в. с решением проблемы передачи электроэнергии на расстояние. В 1874 Ф. А. Пироцкий пришёл к выводу об экономич. целесообразности произ-ва электроэнергии в местах, где имеются дешёвые топливные или гидроэнергетич. ресурсы, с последующей передачей её к потребителю. В 1880-81 Д. А. Лачинов и М, Депре независимо друг от друга предложили для уменьшения потерь электроэнергии в линии электропередачи (ЛЭП) использовать ток высокого напряжения. Первая линия электропередачи на постоянном токе была построена Депре в 1882 между городами Мисбахом и Мюнхеном (длина линии 57 км, напряжение в ней 1,5-2 кв). Однако попытки осуществить электропередачу на постоянном токе оказались неэффективными, т. к., с одной стороны, технич. возможности получения постоянного тока высокого напряжения были ограничены, а с другой - было затруднено его потребление Поэтому наряду с использованием для передачи электроэнергии постоянного тока велись работы по применению в тех же целях однофазного переменного тока, напряжение к-рого можно было изменять (повышать и понижать) с помощью однофазного трансформатора. Создание пром. типа такого трансформатора (О. Блати, М. Дери, К. Циперновский, 1885, и др.) по существу решило проблему передачи электроэнергии. Однако широкое распространение однофазного переменного тока в пром-сти было невозможно из-за того, что однофазные электродвигатели не удовлетворяли требованиям пром. электропривода, и поэтому применение однофазного переменного тока ограничивалось лишь установками электрич. освещения.

В 70-80-е гг. 19 в. электроэнергию начали использовать в технологич. процессах: при получении алюминия, меди, цинка, высококачеств. сталей; для резки и сварки металлов; упрочнения деталей при термической обработке и т. д. В 1878 Сименс создал пром. конструкцию электроплавильной печи. Методы дуговой электросварки были предложены Н. Н. Бенардосом (1885) и Н. Г. Славяновым (1891).

К кон. 70-х гг. относятся также первые попытки использования электроэнергии на транспорте, когда Пироцкий провёл испытания вагона, на к-ром был установлен электрический тяговый двигатель. В 1879 Сименс построил опытную электрич. дорогу в Берлине. В 80-е гг. трамвайные линии были открыты во мн. городах Зап. Европы, а затем в Америке (США). В России первый трамвай был пущен в Киеве в 1892. В 90-е гг. электрич. тяга была применена и на подземных жел. дорогах (в 1890 в Лондонском метрополитене, в 1896 - в Будапештском), а затем на магистральных жел. дорогах.

В кон. 19 в. пром. использование электроэнергии превратилось в важнейшую комплексную технико-экономич. проблему - наряду с экономичной электропередачей необходимо было иметь электродвигатель, удовлетворяющий требованиям электропривода. Решение этой проблемы стало возможным после создания многофазных, в частности трёхфазных, систем (см. Трёхфазная цепь) переменного тока. Над этой проблемой работали ми. инженеры и учёные (Н. Тесла, амер. учёный Ч. Брэдли, нем. инж. Ф. Хазель-вандер и др.), но комплексное решение предложил в кон. 80-х гг. М. О. Доливо-Доброволъский, к-рый разработал ряд пром. конструкций трёхфазных асинхронных двигателей, трёхфазных трансформаторов, и в 1891 построил трёхфазную линию электропередачи Лауфен - Франкфурт (длина линии 170 км).

Современное состояние Э. Практич. применение трёхфазных систем положило начало совр. этапу развития Э., к-рый характеризуется растущей электрификацией пром-сти, с. х-ва, транспорта, сферы быта и др. Увеличение потребления электроэнергии обусловило стр-во мощных электростанций, электрич. сетей, создание новых и расширение действующих электроэнергетических систем. Стр-во мощных ЛЭП высокого напряжения привело к разработке разнообразного высоковольтного оборудования, электроизоляц. материалов, средств электроизмерит. и преобразовав техники и т. д., а также стимулировало улучшение конструкций электрич. машин и аппаратов, разработку методов анализа процессов в цепях переменного тока (работы Ч. П. Штейнмеца и др.). Совершенствование электро-технич. устройств способствовало формированию таких науч. дисциплин, как высоких напряжений техника, теория электрических цепей, теория электрич. машин, электропривод и др. Успехи Э. оказали существ, влияние на развитие радиотехники и электроники, телемеханики и автоматики, а также вычислительной техники и кибернетики.

Один из важных разделов Э.- электромеханика - охватывает вопросы преобразования энергии, практич. решение к-рых на широкой науч. основе потребовало разработки спец. методов, связанных с анализом и описанием процессов, протекающих именно в электротехнич. устройствах. Математич. описание таких процессов основано на решении уравнений Максвелла. При этом их дополняют уравнениями, описывающими конкретный процесс, или используют вариационные принципы механики. Так, на основе возможных перемещений принципа разработаны различные формализованные методы, сре