БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431вательности электрич. сигналов. На этом принципе основано действие таких ЭЛП, как кинескоп (преобразует телевиз. сигнал в телевнз. изображение), и и д и к а т о р н а я электроннолучевая трубка (применяется, напр., для создания радиолокац. изображения).

Если в качестве мишени использовать светочувствит. слой, изменяющий свои электрич. свойства (напр., электропроводность) под действием света, то ЭЛП с такими мишенями способны осуществлять обратное преобразование двумерного оптич. изображения в последовательность телевиз. сигналов. При проецировании на такую мишень передаваемого изображения происходят локальные изменения потенциала поверхности слоя, что приводит к изменению тока, протекающего через слой, в процессе сканирования мишени электронным лучом постоянной интенсивности по принятому в телевидении закону развёртки. Эти изменения тока во времени и представляют собой телевиз. сигнал. ЭЛП, предназначенные для такого преобразования, наз. передающими телевизионными трубками.

Существуют ЭЛП, в к-рых управляемый по интенсивности входным сигналом пучок изменяет к.-л. оптич. свойство мишени, что в процессе отклонения луча приводит к локальным изменениям (модуляции) светового потока от интенсивного внеш. источника света, равномерно освещающего поверхность мишени (рис. 2). Промодулированный световой поток создаёт оптич. изображение, проецируемое с помощью объектива на большой экран (см., напр., Проекционное телевидение). Такие ЭЛП наз. светоклапанными; в них для модуляции света посредством воздействия электронов на вещество используют эффекты окрашивания нек-рых кристаллов (см. Скиатрон), деформацию масляных, термопластич. или иных пленок, электро-оптич. эффекты в кристаллах и др.

Существуют ЭЛП с мишенями, представляющими собой диэлектрич. слой на электропроводящей подложке. С помощью электронного луча на такой мишени можно накапливать электрические заряды. Последовательность входных электрических сигналов преобразуется в процессе развёртки в зарядный (потенциальный) рельеф на мишени, который сохраняется в течение необходимого промежутка времени. Этот процесс наз. записью сигналов. Закодированная таким способом информация может быть снова воспроизведена в форме выходных электрич. сигналов при повторном сканировании мишени тем же или др. электронным лучом. Этот обратный процесс наз. считыванием. Изменение скорости развёртки при считывании по отношению к скорости при записи позволяет изменить частотный спектр выходных сигналов по сравнению с входными при передаче информации по узкополосным каналам связи. Изменением закона развёртки при считывании можно изменять порядок следования сигналов, что важно, напр., при преобразовании радиолокац. сигнала в телевизионный. Многократное накопление перед считыванием периодич. сигналов, сопровождаемых случайными сигналами (помехами), позволяет увеличить отношение полезного сигнала к помехе. ЭЛП с такими мишенями позволяют также запоминать сигналы и воспроизводить их с задержкой во времени, сравнивать их с последующими сигналами или многократно воспроизводить однократно записанный сигнал. ЭЛП с диэлектрич. мишенями получили назв. запоминающих электроннолучевых трубок. Возможно сочетание диэлектрич. мишеней с люминесцентным экраном в одном ЭЛП для создания запоминаемого видимого изображения (см. Потенциалоскоп). Такие ЭЛП используются для осциллографпрования однократных процессов, создания яркого немерцающего изображения и др. целей.

Особую группу составляют ЭЛП для мгновенного преобразования электрич. сигналов с помощью металлич. мишеней различной структуры. В принадлежащих к этой группе т. н. функциональных ЭЛП плоская мишень имеет множество отверстий, расположенных таким образом, что прозрачность мишени является заданной функцией z = f(x, у) координат х и у мишени. При подаче на обе пары отклоняющих пластин двух независимых электрич. сигналов Ux и Uy , под действием к-рых луч отклоняется на мишени в точку с координатами х и у.в цепи расположенного за мишенью коллектора прошедших сквозь мишень электронов регистрируется выходной сигнал z. Каждый тип функциональных ЭЛП предназначен для реализации к.-л. одной функциональной зависимости (напр.,
[30-06-1.jpg]

и др.;. ьозможно последоват. соединение неск. функциональных ЭЛП. С помощью металлич. мишени с расположенными по особому закону прямоугольными отверстиями можно преобразовывать аналоговый сигнал в дискретный в форме последоват. или параллельной серии импульсов двоичного кода. ЭЛП с такими мишенями наз. кодирующими (см. Кодирующее устройство). Если мишень разделить на ряд изолированных друг от друга секторов, то ЭЛП с такой мишенью можно использовать в качестве коммутатора слаботочных электрич. цепей (см. Электроннолучевой переключатель),

В зависимости от назначения и принципа действия ЭЛП могут иметь не одну, а неск. электронных пушек и отличаться от простейших значит, конструктивной сложностью при сохранении, однако, осн. принципа - взаимодействия управляемых электронных потоков с мишенями.

Лит.: Шерстнев Л. Г., Электронная оптика и электроннолучевые приборы, М., 1971; Жигарев А. А., Электронная оптика и электроннолучевые приборы, М., 1972; Денбновецкий С. В., Семенов Г. Ф., Запоминающие электроннолучевые трубки в устройствах обработки информации, М., 1973. В.Л.Герус.

ЭЛЕКТРОННООПТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ (ЭОП), вакуумный фотоэлектронный прибор для преобразования невидимого глазом изображения объекта (в инфракрасных, ультрафиолетовых и рентгеновских лучах) в видимое либо для увеличения (усиления) яркости видимого изображения. В основе действия ЭОП лежит преобразование оптич. или рентгеновского изображения в электронное, осуществляемое с помощью фотокатода, и затем электронного изображения в световое (видимое), получаемое на катодолюминесцентном экране (см. Катодо-люминвсценция, Люминофоры). В ЭОП (см. рис.) изображение объекта проецируется (с помощью объектива) на фотокатод (при использовании рентгеновских лучей теневое изображение объекта проецируется на фотокатод непосредственно). Излучение от объекта вызывает фотоэлектронную эмиссию с поверхности фотокатода, причём величина эмиссии с различных участков последнего изменяется в соответствии с распределением яркости спроецированного на него изображения. Фотоэлектроны ускоряются электрич. полем на участке между фотокатодом и экраном, фокусируются с помощью электрич. или (и) магнитного поля (образующего электронную линзу) и бомбардируют экран, вызывая его люминесценцию. Интенсивность свечения отд. точек экрана зависит от плотности потока фотоэлектронов, вследствие чего на экране возникает видимое изображение объекта. Различают ЭОП одно- и многокамерные (каскадные); последние представляют собой такое последоват. соединение двух или более однокамерных ЭОП, при к-ром световой поток с экрана первого ЭОП (каскада) направляется на фотокатод второго и т. д.

Осн. характеристики ЭОП: 1) интегральная чувствительность (ИЧ) - отношение фототока к интенсивности падающего на фотокатод излучения; определяется гл. обр. свойствами используемого в ЭОП фотокатода; напр., у ЭОП с кислородно-серебряно-цезиевым фотокатодом, применяемого для преобразования изображения в инфракрасных лучах (с дл. волн 0,78-1,5 мкм), ИЧ достигает 70 мка/лм; многощелочной фотокатод (состоит из соединений Sb с Cs и Sb с К и Na), используемый в ЭОП для усиления яркости видимого изображения, обеспечивает ИЧ до 103мка/лм;

2) разрешающая способность, определяемая макс, кол-вом раздельно видимых штрихов изображения на участке экрана дл. 1 мм; лежит в пределах 25-60 и более штрихов на 1 мм;

3) коэффициент преобразования - отношение излучаемого экраном светового потока к лучистому потоку, падающему от объекта на фотокатод; у однокамерных ЭОП составляет неск. тыс., у каскадных - 10б и более.

Осн. недостатки каскадных ЭОП - малая разрешающая способность и сравнительно высокий темновой фон, приводящие к ухудшению качества изображения. Последний недостаток устранён в ЭОП с микроканальным усилителем, предложенным в 1940 сов. инж. И. Ф. Песьяцким. В ЭОП этого типа на пути фотоэлектронов располагается стеклянная пластина, пронизанная множеством каналов диаметром 15- 25 мкм; внутр. стенки каналов покрыты материалом с высоким коэфф. вторичной электронной эмиссии. К пластине прикладывают напряжение в неск. кв, под действием к-рого попавшие в каналы фотоэлектроны ускоряются до энергий, достаточных для возникновения вторичной электронной эмиссии из стенок каналов, что позволяет усилить первичный электронный поток в 105-106 раз. Электроны из каждого канала попадают в соответствующую точку экрана, формируя видимое изображение. В микроканальных ЭОП отпадает необходимость применения электронной фокусировки.

Большой вклад в разработку ЭОП различных типов внесли сов. учёные П. В. Тимофеев, В. В. Сорокина, М. М. Бутслов и др. И. Ф. Усольцев.

ЭОП применяются в инфракрасной технике, спектроскопии, медицине, микробиологии, кинотехнике, ядерной физике и др. областях науки и техники. В кон. 40-х гг. с помощью инфракрасного ЭОП с длинноволновой границей чувствительности 1,1 мкм были сфотографированы спектр ночного неба