БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431статистике. Малая величина а определяет малость сечений электромагнитных процессов с участием адронов по сравнению с сечениями аналогичных процессов, протекающих за счёт сильных взаимодействий; напр., сечение рассеяния фотона с энергией 320 Мэв на протоне составляет ок. 2*10-30 см2, что примерно в 105 раз меньше сечения рассеяния п+-мезона на протоне при соответствующей полной энергии сталкивающихся частиц в системе их центра масс.

Тот факт, что электрич. заряд определяет "силу" взаимодействия и в то же время является сохраняющейся величиной - уникальное свойство Э. в.; вследствие этого Э. в. зависят только от электрич. заряда частиц и не зависят от типа частиц или электромагнитных процессов. При описании электромагнитного поля 4-мерным вектором-потенциалом Aм(м = = 0,1,2,3) [А(ф, А), А - векторный, ф - скалярный потенциалы ] плотность лагранжиана L Э. в. поля с зарядом записывается в виде скалярного произведения:
[30-05-2.jpg]

где: jм - 4-мерный вектор плотности электрич. тока: j = (cp,j), j - плотность тока, р - плотность заряда. При градиентном преобразовании вектор-потенциала, к-рое наз. также калибровочным преобразованием (2-го рода):
[30-05-3.jpg]

где f(x, t) - произвольная функция координат х и времени t, наблюдаемые физ. величины (напряжённости полей, вероятности электромагнитных процессов и т. п.) остаются неизменными. Это свойство, специфич. для Э. в., получило назв. принципа калибровочной инвариантности - одного из принципов симметрии в природе (см. Симметрии в физике), выражающего в наиболее общей форме факт существования электромагнитного поля (фотона) и Э. в. Обобщение калибровочной инвариантности на слабые взаимодействия позволило сформулировать единую теорию слабых и электромагнитных взаимодействий лептонов (см. Слабые взаимодействия).

Эффекты квантовой электродинамики. К ним относятся рассеяние фотонов на электронах (Комптона эффект), тормозное излучение, фоторождение пар е+е-или м+м- на кулоновском поле ядер, сдвиг уровней энергии атомов из-за поляризации электрон-позитронного вакуума (см. Вакуум физический) и др. эффекты, в к-рых можно пренебречь структурой заряда (его отличием от точечнос-ти) при взаимодействии с ним электромагнитного поля. Развитая для описания атомных явлений квантовая электродинамика оказалась справедливой для значительно меньших, чем атомные, расстояний. Изучение рассеяния электронов друг на друге и аннигиляции е++ е- = м+м-при больших энергиях сталкивающихся частиц (до ~ 6 Гэв в системе центра масс), фоторождения пар е+ е-,м+м- с большими относит, импульсами, а также прецизионные измерения уровней энергии электронов в атомах и аномальных магнитных моментов электрона и мюона установили справедливость квантовой электродинамики вплоть до очень малых расстояний: ~ 10-15 см. Её предсказания с высокой степенью точности согласуются с эксперимент, данными. Так, не найдено расхождения между теоретич. и эксперимент, значениями магнитного момента мюона на уровне 10-7%.

Характерной чертой электродинамич. процессов при высоких энергиях Е(Е" >>mс2, где т - масса электрона или мюона) является острая направленность вперёд угловых распределений частиц (у, е± , м*) - продуктов процессов: большая их часть вылетает в пределах угла в ;V <= mc2/E относительно направления налетающих частиц.

Осн. вычислит, метод квантовой электродинамики - теория возмущений: благодаря слабости Э. в. матрицу рассеяния процессов с участием электромагнитного поля можно разложить в ряд по степеням малого параметра ее и при вычислениях ограничиться рассмотрением небольшого числа первых членов этого ряда (обычно не более четырёх).

В диаграммной технике теории возмущений (см. Фейнмана диаграммы) простейший процесс квантовой электродинамики - взаимодействие фотона с бесструктурной (точечной) заряж. частицей входит как составной элемент в любой электродинамич. процесс. Из-за малости а процессы с участием большого числа таких взаимодействий менее вероятны. Однако они доступны наблюдению и проявляются в т. н. радиационных поправках, в эффектах поляризации электрон-позитронного вакуума, в многофотонных процессах. В частности, поляризация вакуума приводит к рассеянию света на свете (рис. 1, а) - эффекту, к-рый отсутствует в классич. электродинамике; этот эффект наблюдается при рассеянии фотонов на кулоновском поле тяжёлого ядра (рис. 1, б).

В характере Э. в. для электронов (позитронов) и для мюонов не обнаружено отличия несмотря на значит, разницу в их массах; это легло в основу т. н. м-е-универсальности, пока не получившей теоретич. объяснения.

Э. в. адронов и атомных ядер. В электромагнитных процессах с участием адронов (фоторождении мезонов, рассеянии электронов и мюонов на протонах н ядрах, аннигиляции пары е+ е~ в адроны и др.) один из объектов взаимодействия - электромагнитное поле - хорошо изучен. Это делает Э. в. исключительно эффективным инструментом исследования строения адронов и природы сильных взаимодействий.

Сильные взаимодействия, как уже упоминалось, играют важную роль в электромагнитных процессах с участием адронов. Так, резонансные состояния адронов (резонансы) могут возбуждаться фотонами и ярко проявляются, напр., в полных сечениях поглощения фотонов протонами с образованием адронов (рис. 2). Электромагнитные свойства и электромагнитная структура адронов (магнитные моменты, поляризуемости, распределения зарядов и токов) обусловлены "облаком" виртуальных частиц (преим. я-мезонов), испускаемых адронами. Напр., среднеквадратичный радиус распределения заряда в протоне определяется размерами этого "облака" и составляет ~0,8* 10-i3cм (см. Формфактор). Вместе со слабыми взаимодействиями Э. в. ответственны за различие масс заряженных и нейтральных .частиц в изотопич. мультиплетах (напр., п и р, л° и п). Короткодействующий характер сильных взаимодействий определяет при энергиях E 2 Гэв) угловые и энергетич. зависимости характеристик (сечений, поляризаций и др.) процессов Э. в. адронов и чисто адронных процессов схожи [на рис. 2 о(ур) при Е> 2 Гэв слабо зависит от энергии, что характерно для полных сечений взаимодействия адронов].

Это сходство легло в основу модели векторной доминантности, согласно к-рой фотон взаимодействует с адронами, предварительно перейдя в адронное состояние- векторные мезоны р°, ш, ф и др. Возможность такого перехода ярко иллюстрируется резонансной зависимостью от энергии сечения процесса е+ + е-= = К+ + К- ,обусловленной превращением виртуального фотона промежуточного состояния в векторный ф-мезон и его последующим распадом на пару К-мезонов (рис. 3, б). Виртуальный фотон характеризуется отличным от 0 значением квадрата 4-мерного импульса q2 = E2/с2-р2 <> <>0, где Я, р - энергия и трёхмерный импульс фотона (для реального фотона q2 = 0). Напр., для виртуального фотона, которым обмениваются электрон и протон при рассеянии, q2 = -(4ЕЕ'/с2)* * sin2 (v/2), где Е, Е' - энергии электрона до и после рассеяния (для случая Е, Е'>> >>mс2), в - угол рассеяния в лабораторной системе отсчёта. Эксперимент показал удовлетворит, применимость модели векторной доминантности для описания электромагнитных явлений с участием реальных фотонов и виртуальных фотонов с |q2|<.2(Гэв/с)2. В частности, в сечении аннигиляции е+ + е- = м+ +м- при энергии в системе центра масс 1019,5 Мэв наблюдаются отклонения от предсказаний квантовой электродинамики, к-рые вытекают из данной модели (обусловлены образованием ср-мезона в промежуточном состоянии; см. рис. 3, а). (Согласно квантовой электродинамике, этот процесс происходит посредством превращения пары е+е- в виртуальный фотон у, а у - в пару м+м-.)

Однако модель векторной доминантности не описывает Э. в. адронов при больших |q2| [|q2| > 2(Гэв/с)г]. Так, измеренное сечение упругого рассеяния электронов на протонах, к-рое зависит от пространств, распределения электрич. зарядов и токов внутри нуклона, спадает с ростом |q2| значительно быстрее, чем предсказывается моделью. Напротив, сечение глубоко неупругого рассеяния электронов (процесса е- + р = е-+ адроны при больших передачах энергии и импульса адронной системе) падает медленнее; при этом
с увеличением полной энергии W адронов в конечном состоянии характер рассеяния приближается к характеру рассеяния на точечной частице. Последнее обстоятельство привело к формулировке т. н. партонной модели адронов; согласно этой модели адроны состоят из частей (партонов), к-рые при взаимодействии с фотонами проявляют себя как бесструктурные точечные частицы. Отождествление пар-тонов с кварками оказалось плодотворным для понимания глубоко неупругого рассеяния.

Несмотря на то, что Э. в. - наиболее полно изученный тип фундаментального взаимодействия, его продолжают интенсивно исследовать во мн. науч. центрах. Это обусловлено как исключит, многообразием микроскопич. и макроскопич. проявлений Э. в., имеющих прикладное значение, так и уникальной ролью электромагнитного поля (как хорошо изученного объекта) в исследов