БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431й скорости Э. п. служит плотность тока (а/см2). Особенностью Э. п. является зависимость их скорости от электродного потенциала, а также от строения двойного электрического слоя и наличия адсорбированных частиц на межфазной границе. Скорость Э. п. увеличивается по мере возрастания перенапряжения. При равновесном потенциале достигается динамич. равновесие, при к-ром ток через электрод не протекает, однако через границу фаз идёт непрерывный обмен носителями зарядов - ионами или электронами (т. н. ток обмена - один из основных кине-тич. параметров Э. п.). Скорость Э. п. может меняться в очень широких пределах в зависимости от природы электрода. Так, ток обмена при электрохимич. процессе выделения водорода из водных растворов кислот варьирует от 10-12 а/см2 для ртутного электрода до 0,1 а/см2для платинового. На скорость Э. п. влияют концентрация реагирующих частиц и темп-ра.

Простейшие Э. п.- реакции переноса электрона типа Fe2+ = Fe3+ + e. Перенос электронов может сопровождаться разрывом хим. связей и переходом атомов от исходного вещества к продукту реакции, напр. C6H5NO2 + 6H++ 6е= = С6Н5NH2+ 2Н2О. Более сложные Э. п. сопровождаются образованием новой фазы. К ним относятся катодное осаждение и анодное растворение металлов, напр. Ag+ + е=> Ag, а также выделение и ионизация газов, напр. 2Н+ + + 2е = Н2. Одной из стадий Э. п. всегда является стадия разряда-ионизации, т. е. переход заряженной частицы через границу фаз. Эта стадия - электрохимия, элементарный акт суммарного процесса. Э. п. включают как стадии доставки реагирующего вещества к поверхности электрода, так и отвода продуктов реакции в объём раствора. Э. п. могут включать также хим. стадии, предшествующие стадии разряда-ионизации или протекающие после неё. Широко применяемые в технике электродные процессы описаны в статьях Гальванотехника, Электрометаллургия, Электрофизические и электрохимические методы обработки, Анодирование. В. В. Лосев

ЭЛЕКТРОДНЫЙ ПОТЕНЦИАЛ, разность электрич. потенциалов между электродом и находящимся с ним в контакте электролитом (чаще всего между металлом и раствором электролита). Возникновение Э. п. обусловливается переносом заряженных частиц через границу раздела фаз, специфич. адсорбцией ионов, а при наличии полярных молекул (в том числе молекул растворителя)- ориентац. адсорбцией их. Величина Э. п. в неравновесном состоянии зависит как от природы и состава контактирующих фаз, так и от кинетич. закономерностей электродных реакций на границе раздела фаз. Равновесное значение скачка потенциалов на границе раздела электрод/раствор определяется исключительно особенностями электродной реакции и не зависит от природы электрода и адсорбции на нём поверхностно-активных веществ. Эту абсолютную разность потенциалов между точками, находящимися в двух разных фазах, нельзя измерить экспериментально или рассчитать теоретически. Практич. значение имеют относительные Э. п., обычно наз. просто Э. п., представляющие собой разность Э. п. рассматриваемого электрода и электрода сравнения - чаще всего нормального водородного электрода, Э. п. к-рого условно принимается равным нулю.

При электрохимич. равновесии на электроде величина Э. п. (?) может быть выражена через изменение гиббсовой энергии (&G) реакции: Е = -&G/zF, где z - число электронов, участвующих в электрохимич. процессе, F - Фарадея число. Э. п. в этом случае зависит от активности (а) участвующих в реакции веществ (потенциалопределяющих веществ). Для электродов Ме/Меn+Е = = E0 + (RT/zF)ln aмеn++, где R - газовая постоянная, Т - темп-pa, Eо - нормальный потенциал. Для окисли-тельно-восстановит. систем с инертным электродом, у к-рых все компоненты электрохимич. реакции находятся в растворе, Э. п. (окислительно-восстановительный потенциал) определяется активностями как окисленной (аак), так и восстановленной (ав) форм вещества:
[30-04-11.jpg]

где v - стехиометрический коэффициент.

В случае, когда на электроде возможно одновременное протекание более одной электродной реакции, используется понятие стационарного Э. п. При пропускании электрич. тока измеренный Э. п. будет отличаться от равновесного на величину поляризации (см. Поляризация электрохимическая). Лит. см. при ст. Электрохимия.

В. В. Городецкий.

ЭЛЕКТРОДОМЕННАЯ ПЕЧЬ, электрич. рудовосстановительная шахтная печь для выплавки чугуна из железных руд. Состоит из шахты с верхней загрузкой шихтовых материалов и расположенного под ней широкого горна. Переменный ток подаётся на наклонные (реже горизонтальные) угольные электроды. Необходимое для технологич. процесса тепло выделяется в горне в результате горения электрич. дуг, а также нагревания шихты и шлака при прохождении через них электрич. тока. Конструкция Э. п. разработана в 1898 (Э. Стассано в Италии). Первая пром. Э. п. была введена в эксплуатацию в 1908 в Швеции (з-д Домнарвет). В 1-й четв. 20 в. число Э. п. достигло неск. десятков (в основном в Швеции и Норвегии, в меньшей мере в Италии и Японии). Применение Э. п. было экономически оправданным в тех районах, где мало коксующихся углей и есть дешёвая электроэнергия. Но из-за недостаточно высокой производительности и сложности эксплуатации, а также в связи с появлением и развитием мощных закрытых дуговых печей число работающих Э. п. резко сократилось и к сер. 70-х гг. их эксплуатация практически прекратилась.

ЭЛЕКТРОДЫ гальванических цепей, гальванические электроды, металлические, окис-ные или др. электрич. проводники, находящиеся в контакте с ионным проводником (электролитом - раствором или расплавом). Важнейшей характеристикой таких Э. является электродный потенциал, устанавливающийся на границе электрод/электролит.

По применению различают электроды сравнения, индикаторные Э. и др. Системы двух различных Э. могут использоваться как химические источники тока, а при пропускании через такие системы постоянного тока они служат электролизёрами.

ЭЛЕКТРОДЫ СРАВНЕНИЯ, гальва-нич. электроды, применяемые для измерения электродных потенциалов. Обычно измеряют разность потенциалов между исследуемым электродом и выбранным Э. с., имеющим известный потенциал относительно условно принятого за нуль потенциала нормального водородного электрода (НВЭ) (более строго: за нуль принят потенциал стандартного водородного электрода, отличающегося от НВЭ тем, что для него равна единице не концентрация, а активность ионов Н+). Измеренную разность принимают за потенциал исследуемого электрода, указывая, относительно какого Э. с. он измерен. В качестве Э. с. выбирают электроды, потенциалы к-рых характеризуются хорошей стабильностью и воспроизводимостью. Э. с. различаются по природе протекающих на них электрохимич. реакций. Эти реакции должны быть высокообратимыми (чтобы исключить изменения потенциала Э. с. при прохождении через него небольшого тока).

Наиболее употребительны Э. с.: каломельные (Hg/Hg2Cl2/KCl или НС1), хлор-серебряные (Ag/AgCl/KCl или НС1), ртутносульфатныг (Hg/HgSO4/H2SO4), ртутноокисные (Hg/HgO/KOH), хингид-ронные (Pt/гидрохинон, хинон/HCl). Потенциалы Э. с. зависят от концентрации потенциалопределяющих ионов (напр., для каломельных Э. с.- от концентрации ионов С1~: потенциалы 0,1 н., 1 н. и насыщенного каломельных Э. с. при 25 °С равны соответственно 333, 280 и 241 мв относительно НВЭ). Изменение потенциалов (ф) Э. с. с темп-рой (t, °C) характеризуется температурными коэффициентами, различными для разных Э. с. Для 1 н. каломельного Э. с., напр., Ф = + 280 - 0,24 (t - 25) мв относительно НВЭ при той же темп-ре (по определению Фнвэ = 0 при всех темп-рах). Выбор Э. с. зависит от условий измерений. В неводных средах можно применять и водный Э. с., но учитывать в этом случае диффузионные потенциалы на границе между водным и неводным растворами. В расплавах используют металлические Э. с., потенциалы которых в данном расплаве не меняются во времени.

Лит.: Антропов Л. И., Теоретическая электрохимия, Зизд.. М., 1975; Reference electrodes, ed. by D. J. G. Ives, G. J. Janz, N. Y.- L., 1961; Б а т л е р Д ж., Электроды сравнения в апротонных органических растворителях, в кн.: Электрохимия метал!ов в неводных растворах, пер. с англ., М., 1974. Г. М. Фло&ианович.

ЭЛЕКТРОЖЕЗЛОВАЯ СИСТЕМА, см. Жезловая система.

ЭЛЕКТРОИЗГОРОДЬ, электропастух, тонкая стальная проволока, подвешенная на кольях и периодически получающая кратковрем. маломощные электрич. импульсы. Используется для ограничения пастбищных участков при загонной системе пастьбы скота. Прикоснувшись к проволоке, животное замыкает цепь тока и получает ощущение кратковременного удара. Вскоре у животных вырабатывается условный рефлекс боязни проволоки. Источник питания Э.- аккумуляторные батареи, дающие напряжение не более 6 в. В зависимости от вида скота проволоку навешивают на вые. 40- 80 см.

ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЙ КОМБИНИРОВАННЫЙ ПРИБОР, измерительный прибор, в к-ром для измерения (неодновременного) двух и более величин используется один измерит, механизм либо неск. различных измерит, преобразователей с общим отсчётным устройством. Шкалу или отсчётное устройство Э. к. п. градуируют в единицах тех величин, к-рые он измеряет. Наиболее широко используют приборы