БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431ств (см. Магнитная анизотропия). Вблизи Т = 0 К отклонения от магнитного порядка малы и не локализуются в определённых участках, а в виде волн распространяются по кристаллу. Это - спиновые волны; соответствующие им квазичастицы - магноны проявляют себя в тепловых и магнитных свойствах. Так, тепловое возбуждение спиновых волн увеличивает теплоёмкость магнетиков (по сравнению с немагнитными телами) и приводит к характерной зависимости теплоёмкости от темп-ры (напр., при T
Ядерные явления в T. т.Роль атомных ядер в свойствах Т. т. не ограничивается тем, что в иих сосредоточены масса тела и его положит, заряд. Если ядра обладают магнитными моментами, то при достаточно низкой темп-ре их вклад в парамагнитную восприимчивость и теплоёмкость становится ощутимым. Особенно отчётливо это проявляется при измерении резонансного поглощения энергии переменного магнитного поля. Зеемановское расщепление ядерных уровней энергии является причиной ядерного магнитного резонанса, одного из широко распространённых методов изучения Т. т., так как структура ядерных магнитных уровней существенно зависит от свойств электронной оболочки атома.

Многие процессы (ядерные, электронные) в Т. т. приобретают специфич. черты, позволяющие использовать их для изучения свойств Т. т.; напр., изучение электронно-позитронной аннигиляции позволяет исследовать свойства электронной системы Т. т.; резонансное поглощение у-квантов ядрами является распространённым методом исследования энергетич. спектра Т. т., локальных магнитных полей (см. Мёссбауэра эффект) и т. п.; частота ядерного магнитного резонанса изменяется при переходе из нормального в сверхпроводящее состояние.

Исследование взаимодействия быстрых заряженных частиц с Т. т. показало, что упорядоченное расположение атомов накладывает существенный отпечаток на передачу энергии от быстрой частицы атомам Т. т. Напр., имеется резкая зависимость длины пробега быстрой частицы от направления относительно кристаллографич. осей (см. Каналирование заряженных частиц, Теней эффект).

Заключение. Электрич., магнитные и оптич. свойства Т. т. широко используются в радиотехнике и электротехнике, в приборостроении и т. п. Полупроводниковые приборы заменили электронные лампы; сверхпроводящие соленоиды заменяют электромагниты; создаются высокочастотные устройства и измерительные приборы, использующие сверхпроводники; основой квантовых генераторов являются кристаллы. Совр. техника широко использует квантовые свойства Т. т. Расширяются экспериментальные методы исследования Т. т., они включают низкие темп-ры, сильные магнитные и электрич. поля, высокие давления, практически весь диапазон электромагнитных волн (от радиоволн до жёстких у-квантов), разнообразные "проникающие" частицы (нейтроны, протоны больших энергий) и т. д. Нек-рые исследования Т. т. стали возможны только после появления сверхчистых кристаллов. Важная особенность физики Т. т.- возможность синтезировать Т. т. с необходимыми свойствами. Технич. использование сверхпроводимости основано на создании сплавов (Nb3Sn и др.), совмещающих сверхпроводящие свойства (при высоких Ткр и Н„р) с пластичностью.

Физика T. т.- непрерывно действующий источник новых материалов. Новые физические идеи, рождающиеся в физике Т. т., проникают в ядерную физику, астрофизику, в физику элементарных частиц, в молекулярную биологию, геологию и др.

Лит.: Ландау Л. Д., Л и фш и ц Е. М., Механика сплошных сред, 2 изд., М., 1953 (Теоретическая физика); и x же, Статистическая физика, 2 изд., М., 1964 (Теоретическая физика, т. 5); их же, Электродинамика сплошных сред, М., 1959 (Теоретическая физика); Киттель Ч., Введение в физику твердого тела, пер. с англ., 2 изд., М., 1962; 3 а и м а н Д ж., Электроны и фотоны, пер. с англ., М., 1962; П а йе р л с Р., Квантовая теория твердых тел, пер. с англ., М., 1956: Физика твердого тела. Атомная структура твердых тел. Электронные свойства твердых тел, пер. с англ., М., 1972 (Над чем думают физики, в. 7-8). См. также лит. при статьях Металлы, Полупроводники, Диэлектрики, Кристаллы. И. М. Лифшиц, М. И. Каганов.








25I.htm
ТЕЙЛОРА РЯД, степенной ряд вида
[25H-1.jpg]

где f(x) - функция, имеющая при x = а производные всех порядков. Во многих практически важных случаях этот ряд сходится к f(x) на нек-ром интервале с центром в точке а:

[25H-2.jpg]


(эта формула опубликована в 1715 Б. Тейлором). Разность Rn(x) = f(x) - Sn(x), где Sn(x) - сумма первых п + 1 членов ряда (1), наз. остаточным членом Т. р. Формула (2) справедлива, если lim Rn(x) = 0. Т. р. можно представить n->... в виде

[25H-3.jpg]

применимом и к функциям многих переменных.

При а = 0 разложение функции в Т. р. (исторически неправильно называемый в этом случае рядом Маклорена; см. Маклорена ряд) принимает вид:

[25H-4.jpg]

в частности:

[25H-5.jpg]

Ряд (3), являющийся обобщением на случай дробных и отрицательных показателей формулы бинома Ньютона, сходится: при -l0. Ряды (4), (5) и (6) сходятся при любых значениях x, ряд (7) сходится при -l
Функция f(z) комплексного переменного z, регулярная в точке а, раскладывается в Т. р. по степеням z - а внутри круга с центром в точке а и с радиусом, равным расстоянию от а до ближайшей особой точки функции f(z). Вне этого круга Т. р. расходится, поведение же его на границе круга сходимости может быть весьма сложным. Радиус круга сходимости выражается через коэффициенты Т. р. (см. Радиус сходимости).

Т. р. является мощным аппаратом для исследования функций и для приближённых вычислений. См. также Тейлора формула.

Лит.: Хин чин А. Я., Краткий курс математического анализа, М., 1953; Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 7 изд., т. 2, М., 1969.

ТЕЙЛОРА ФОРМУЛА, формула
[25H-6.jpg]

изображающая функцию f(x), имеющую n-ю производную f(n) (a) в точке x = а, в виде суммы многочлена степени п, расположенного по степеням x-а, и остаточного члена Rn(x), являющегося в окрестности точки а бесконечно малой более высокого порядка, чем (x-а)" [т. е. Rn(x) = ап(х)(х-а)n, где an(x)->0 при x->а]. Если в интервале между а и x существует (n + 1 )-я производная, то Rn(x) можно представить в видах:
[25H-7.jpg]

[25H-8.jpg]- какие-то точки указанного интервала (остаточный член Т. ф. в формах Лагранжа и соответственно Коши). График многочлена, входящего в Т. ф., имеет в точке а соприкосновение не ниже n-ro порядка с графиком функции f(x). Т. ф. применяют для исследования функций и для приближённых вычислений.

Лит.: Хин чин А. Я., Краткий курс математического анализа, М., 1953; Ф и хтенгольц Г. М., Курс дифференциального и интегрального исчисления, 7 изд., т. 1, М., 1969.



25I.htm
ТЕЛЕВИДЕНИЕ (от теле... и слова видение), область науки, техники и культуры, связанная с передачей зрительной информации (подвижных изображений) на расстояние радиоэлектронными средствами; собственно способ такой передачи. Наряду с радиовещанием Т.-одно из наиболее массовых средств распространения информации (политической, культурной, научно-познавательной, учебной^ одно из осн. средств связи, используемое в науч., организац., технич. и др. прикладных целях (напр., в системах диспетчеризации и контроля в пром-сти и на транспорте, в космич. и ядерных исследованиях, в воен. деле и т. д.).

Основные принципы телевидения и их техническая реализация. Конечным (приёмным) звеном телевиз. передачи служит человеческий глаз, поэтому телевиз. системы строятся с учётом особенностей зрения. Реальный мир воспринимается человеком визуально в цветах, предметы - рельефными, расположенными в объёме нек-poro пространства, а события - в динамике, движении; следовательно, идеальная телевиз. система должна обеспечивать возможность воспроизводить эти свойства материального мира. В совр. Т. задачи передачи движения и цвета успешно решены (и технически, и практически). На стадии испытаний находятся телевиз. системы, способные воспроизводить рельефность предметов и глубину пространства (см. Стереоскопическое телевидение).

Для телевиз. передачи изображений необходимо осуществить 3 процесса: преобразование света, испускаемого объектом передачи или отражаемого им, в электрич. сигналы; передачу электрич. сигналов по каналам связи и их приём; обратное преобразование электрич. сигналов в световые импульсы, воссоздающиеоптич, изображение объекта. Принципиальная основа для реализации этих процессов была заложена в трудах У. Смита (США), открывше