БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431вязаны с фотохим. изменениями соотношений спектральной чувствительности селективных приёмников света сетчатки и взаимодействием возбуждений в зрит, центрах головного мозга.

Лит. см. при ст. Цветовое зрение.

ЦВЕТОВОЙ ЭКВИВАЛЕНТ, то же, что колор-эквивалент.

ЦВЕТОВОСПРОИЗВЕДЕНИЕ ФОТОГРАФИЧЕСКОЕ, передача цветовых тонов (ЦТ) объекта съёмки в его изображении на позитивном цветофотографиче-ском материале. О качестве Ц. ф. судят по тому, насколько точно ЦТ изображения соответствуют ЦТ объекта, причём различают три вида соответствия: физическое, физиологическое и психологическое. Физически точно Ц. ф., при к-ром спектральное распределение излучения, пропускаемого (обычная плёнка) или отражаемого (бумага или пигментированная плёнка) любым участком изображения, полностью совпадает со спектральным распределением излучения от соответствующего участка объекта. Физиологически точным наз. Ц. ф., при к-ром излучение, отражаемое или пропускаемое любым участком изображения, визуально равно излучению от соответствующего участка объекта по объективным (колориметрическим) характеристикам цвета, напр, трём его координатам (см. Цветовые измерения). Наконец, психологически точно Ц. ф., при к-ром субъективное восприятие цвета любого участка объекта и соответствующего ему участка изображения одинаково; при этом надо учитывать неизбежные искажения цветов трёхмерных объектов, вносимые двумерностью изображения (особенно на контурах деталей изображения).

Субъективное впечатление в любительской и профессиональной фото- и кинематографии является главным и по существу единственным критерием точности Ц. ф., причём оно не связано однозначно с объективными оценками Ц. ф. (спектральными, колориметрич.), т. к. решающим образом зависит от мн. переменных факторов, предполагаемых при объективной оценке постоянными. Среди этих факторов важнейшие связаны со свойствами самого изображения и условиями его показа (напр., условия освещения и яркость изображения, масштаб увеличения или уменьшения, окружающий фон и его цветность) и свойствами глаза при рассматривании (прежде всего его цветовой адаптацией); весьма важны также условия сопоставления (в частности, рассматривается ли изображение в тех же условиях, что и объект, рассматриваются они оба одновременно или раздельно, и т. д.). В основу количеств, оценки (если она нужна) психологич. точности Ц. ф. можно положить т. н. порог цветоразличения (см. Цветовой контраст) - то миним. изменение цвета, к-рому при данных условиях наблюдения соответствует первое едва заметное изменение зрит, ощущения.

Лит.: Нюберг Н. Д., Теоретические основы цветной репродукции, М., 1947;

Артюшин Л. ф., Основы воспроизведения цвета в фотографии, кино и полиграфии, М., 1970. А. Л. Картужанский.

ЦВЕТОВЫЕ ИЗМЕРЕНИЯ, методы измерения и количественного выражения цвета. Вместе с различными способами математич. описания цвета Ц. и. составляют предмет колориметрии. В результате Ц. и. определяются 3 числа, т. н. цветовые координаты (ЦК), полностью определяющие цвет (при некоторых строго стандартизованных условиях его рассматривания).

Основой математич. описания цвета в колориметрии является экспериментально установленный факт, что любой цвет при соблюдении упомянутых условий можно представить в виде смеси (суммы) определённых количеств 3 л и-нейно независимых цветов, т. е. таких цветов, каждый из к-рых не может быть представлен в виде суммы к.-л. количеств 2 других цветов. Групп (систем) линейно независимых цветов существует бесконечно много, но в колориметрии используются лишь нек-рые из них. Три выбранных линейно независимых цвета наз. основными цветами; они определяют цветовую координатную систему (ЦКС). Тогда 3 числа, описывающие данный цвет, являются количествами осн. цветов в смеси, цвет к-рой зрительно неотличим от данного цвета; это и есть ЦК данного цвета.

Экспериментальные результаты, к-рые кладут в основу разработки колориметрич. ЦКС, получают при усреднении данных наблюдений (в строго определённых условиях) большим числом наблюдателей; поэтому они не отражают точно свойств цветового зрения к.-л. конкретного наблюдателя, а относятся к т. н. среднему стандартному колориметрич. наблюдателю.

Будучи отнесены к стандартному наблюдателю в определённых неизменных условиях, стандартные данные смешения цветов и построенные на них колориметрич. ЦКС описывают фактически лишь физ. аспект цвета, не учитывая изменения цвето-восприятия глаза при изменении условий наблюдения и по др. причинам (см. Цвет).

Когда ЦК к.-л. цвета откладывают по 3 взаимно перпендикулярным координатным осям, этот цвет геометрически представляется точкой в трёхмерном, т. н. цветовом, пространстве или же векmopoM начало к-рого совпадает с началом координат, а конец - с упомянутой точкой цвета. Точечная и векторная гео-метрич. трактовки цвета равноценны и обе используются при описании цветов. Точки, представляющие все реальные цвета, заполняют нек-рую область цветового пространства. Но математически все точки пространства равноправны, поэтому можно условно считать, что и точки вне области реальных цветов представляют нек-рые цвета. Такое расширение толкования цвета как математич. объекта приводит к понятию т.н. нереальных цветов, к-рые невозможно как-либо реализовать практически. Тем- не менее с этими цветами можно производить математич. операции тал же, как и с реальными цветами, что оказывается чрезвычайно удобным в колориметрии. Соотношение между осн. цветами в ЦКС выбирают так, что их количества, дающие в смеси нек-рый исходный цвет (чаще всего белый), принимают равными 1.

Своего рода "качество" цвета, не зависящее от абс. величины цветового вектора и наз. его цветностью, геометрически удобно характеризовать в двумерном пространстве - на "единичной"- плоскости цветового пространства, проходящей через 3 единичные точки координатных осей (осей осн. цветов). Линии пересечения единичной плоскости с координатными плоскостями образуют на ней равносторонний треугольник, в вершинах к-рого находятся единичные значения осн. цветов. Этот треугольник часто наз. треугольником Максвелла. Цветность к.-л. цвета определяется не 3 его ЦК, а соотношением между ними, т. е. положением в цветовом пространстве прямой, проведённой из начала координат через точку данного цвета. Другими словами, цветность определяется только направлением, а не абс. величиной цветового вектора, и, следовательно, её можно характеризовать положением точки пересечения этого вектора (либо указанной прямой) с единичной плоскостью. Вместо треугольника Максвелла часто используют цветовой треугольник более удобной формы -прямоугольный и равнобедренный. Положение точки цветности в нём определяется двумя координатами цветности, каждая из к-рых равна частному от деления одной из ЦК на сумму всех 3 ЦК. Двух координат цветности достаточно, т. к. по определению сумма её 3 координат равна 1. Точка цветности исходного (опорного) цвета, для к-рой 3 цветовые координаты равны между собой (каждая равна 4/з), находится в центре тяжести цветового треугольника.

Представление цвета с помощью ЦКи должно отражать свойства цветового зрения человека. Поэтому предполагается, что в основе всех ЦКС лежит т. н. физиологическая ЦКС. Эта система определяется 3 функциями спектральной чувствительности 3 различных видов приёмников света (т. н. колбочек), к-рые имеются в сетчатке глаза человека и, согласно наиболее употребительной трёхцветной теории цветового зрения, ответственны за человеческое цветовосприятие. Реакции этих 3 приёмников на излучение считаются ЦК в физиол. ЦКС, но функции спектральной чувствительности глаза не удаётся установить прямыми измерениями. Их опре-/кляют косвенным путём и не используют непосредственно в качестве основы построения колориметрич. систем.

Свойства цветового зрения учитываются в колориметрии по результатам экспериментов со смешением цветов. В таких экспериментах выполняется зрительное уравнивание чистых спектральных цветов (т. е. цветов, соответствующих монохроматическому свету с различными длинами волн) со смесями 3 осн. цветов. Оба цвета наблюдают рядом на 2 половинках фотометрич. поля сравнения. По достижении уравнивания измеряются количества 3 осн. цветов и их отношения к принимаемым за 1 количествам осн. цветов в смеси, уравнивающей выбранный опорный белый цвет. Полученные величины будут ЦК уравниваемого цвета в ЦКС, определяемой осн. цветами прибора и выбранным опорным белым цветом. Если единичные количества красного, зелёного и синего осн. цветов обозначить как (К), (3), (С), а их количества в смеси (ЦК) - К, 3, С, то результат уравнивания можно записать в виде цветового уравнения: Ц = К(К) + 3(3) + С (С). Описанная процедура не позволяет уравнять большинство чистых спектральных цветов со смесями 3 осн. цветов прибора. В таких случаях нек-рое количество одного из основных цветов (или даже двух) добавляют к уравниваемому цвету. Цвет получаемой смеси уравнивают со смесью оставшихся 2 осн. цветов прибора (или с одним). В цветовом уравнении это учитывают переносом соответствующего члена из левой части в правую. Так, если в поле измеряемого цвета был добавлен красный цвет,