БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431 большинства Т. т. реакция на внешнее механич. воздействие зависит от его темпа: хрупкое при ударе Т. т. может выдержать значительно большую статич. нагрузку.

При небольших статич. нагрузках у всех Т. т. наблюдается линейное соотношение между напряжением и деформацией (Тука закон). Такая деформация наз. упругой. Упругая деформация обратима: при снятии напряжения она исчезает. Для идеального монокристалла (без дефектов) область обратимой деформации наблюдалась бы вплоть до разрушения, причём предел прочности должен был бы соответствовать силам связи между атомами. При больших нагрузках реакция реального Т. т. существенно зависит от дефектности образца (от наличия или отсутствия дислокаций, от размеров кристаллич. зёрен и т. п.) -разрушение начинается в самых слабых местах. Дислокация - наиболее подвижный дефект кристалла, поэтому именно дислокации в большинстве случаев определяют его пластичность. Появление (рождение) и перемещение дислокации - элементарные акты пластичности.

Механич. свойства Т. т. зависят от его обработки, вносящей или устраняющей дефекты (отжиг, закалка, легирование, гидроэкструзия и т. п.). Напр., предел прочности при растяжении специально обработанной стали 300 - 500 кгс/мм2, а обычной стали того же химич. состава - не более 40-50 кгс/мм2 (табл. 2).

Упругие свойства изотропных Т. т. (в частности, поликристаллов) описываются модулем Юнга Е (отношение напряжения к относительному удлинению) и коэффициентом Пуассона v (отношение изменения поперечных и продольных размеров), характеризующими реакцию на растяжение (сжатие) образца в виде однородного стержня (см. Упругость). Для стали и ковкого железа Е = = 2,1 -106кгс/см2. Из условия устойчивости недеформированного состояния следует, что Е > 0, а -1 < v < 1/2. Однако в природе тела с отрицательным коэфф. Пуассона не обнаружены. Модуль Юнга и коэфф. Пуассона определяют скорость распространения звуковых волн в изотропном Т. т.

В анизотропном кристалле упругие свойства описываются тензором 4-го ранга, число независимых компонент к-рого обусловлено симметрией кристалла. Поглощение звука (и вообще упругих волн) в Т. т. обусловлено: неодинаковостью темп-ры в разных участках Т. т. при прохождении по нему волны и возникновением в результате этого необратимых тепловых потоков (теплопроводность); конечностью скорости движения частиц Т. т. Необратимые процессы рассеяния, связанные с конечностью скорости движения, наз. внутренним трением, или вязкостью. В идеальных кристаллах теплопроводность и вязкость определяются столкновениями квазичастиц друг с другом, в реальных кристаллах к этим процессам добавляется рассеяние звуковых волн на дефектах кристаллической решётки, важную роль играет также диффузия. Исследование поглощения звука - метод изучения динамических свойств Т. т., в частности свойств квазичастиц.

Механич. свойства Т. т.- основа их инж. применения как конструкционных материалов. В частности, знание связи деформаций и напряжений позволяет решать конкретные практич. задачи о распределении напряжений и деформаций в Т. т. различной формы (балки, пластины, оболочки и т. п.) при разнообразных нагрузках - изгибе, кручении (см. Сопротивление материалов).

Движение частиц в Т. т. Ф о н о н ы. Исследование теплового движения частиц в конденсированных средах приводит к понятию фононов. Если N - число ячеек кристалла, a v - число атомов (ионов) в элементарной ячейке, то 3Nv - полное степеней свободы число атомов кристалла, совершающих колебательное движение вблизи положений равновесия. Колебательный характер их движения сохраняется вплоть до темп-ры плавления Тпл. При Т = Тпл средняя амплитуда колебания атома меньше межатомного расстояния. Плавление обусловлено тем, что термодинамический потенциал жидкости при Т > ТПл меньше термодинамического потенциала T. т. В первом (гармонич.) приближении систему с 3Nv колебательными степенями свободы можно рассматривать как совокупность 3Nv независимых осцилляторов, каждый из к-рых соответствует отдельному нормальному колебанию. В кристалле с нарушениями периодичности (дефектами) среди нормальных колебаний имеются особые, в к-рых участвуют не все атомы кристалла, а только локализованные вблизи дефекта (напр., чужеродного атома). Такие колебания наз. локальными. Хотя их число невелико, они в ряде случаев определяют нек-рые физ. свойства (оптич. свойства, особенности Мёссбауэра эффекта и др.). Вблизи поверхности в Т. т. могут распространяться локальные поверхностные волны, амплитуда к-рых экспоненциально уменьшается при удалении от поверхности (Р э л е я волны). Подобные волны могут распространяться также и внутри кристалла вдоль плоских дефектов (напр., границ кристаллич. зёрен) и вдоль дислокаций.

Нормальное колебание - волна смещений атомов из положения равновесия. Существует 3v типов нормальных колебаний (для простых решёток v = 1). Каждая волна характеризуется волновым вектором k и частотой со. Разным типам нормальных колебаний соответствуют различные зависимости: со, (k) (s = 1,2,... ..., 3v), наз. законом дисперсии. Периодичность в расположении атомов приводит к тому, что все величины, зависящие от k, в кристалле оказываются также периодич. функциями. Напр.,

[25G-14.jpg] , где k - произвольный вектор обратной решётки.
Зная силы взаимодействия между структурными частицами кристалла, можно рассчитать законы дисперсии. Существуют и экспериментальные методы их определения. Наиболее результативный из них - неупругое рассеяние медленных нейтронов в кристаллах. Нек-рые выводы о законе дисперсии можно сделать, исходя из общих положений: среди нормальных колебаний должны быть такие, к-рые при больших длинах волн (по сравнению с межатомными расстояниями) соответствуют обычным звуковым волнам в кристалле. Таких волн три (для упругоизотропного тела - две волны поперечные и одна продольная), причём для всех трёх частота со - однородная функция 1-го порядка от компонент вектора fe, обращающаяся в нуль при k = 0, т. е. для трёх из 3v типов нормальных колебаний закон дисперсии при малых значениях волнового вектора имеет вид:

[25G-15.jpg]

где с,- скорость звука в кристалле, зависящая от направления распространения звука. Эти три типа нормальных колебаний наз. акустическими, при их возбуждении атомы одной ячейки колеблются как целое. Остальные 3v - 3 типов колебаний наз. оптическими (впервые наблюдались по резонансному поглощению света). Частота со оптич. колебания при k -" 0 стремится к конечному пределу. При этом атомы элементарной ячейки колеблются друг относительно друга, а центр тяжести ячейки покоится. Колебание каждого типа имеет макс, частоту ш5макс; это значит, что существует макс, частота колебаний атомов в кристалле
[25G-16.jpg][25G-17.jpg]
Знание закона дисперсии позволяет определить плотность состояний v(co). Число колебательных состояний в интервале частот [25G-18.jpg][25G-19.jpg] равно[25G-20.jpg] .
При[25G-21.jpg][25G-22.jpg] , а при[25G-23.jpg][25G-24.jpg] .
Плотность состоянии играет определяющую роль в термодинамич. равновесных свойствах Т. т. Каждой волне с волновым вектором k и частотой со можно сопоставить квазичастицу с квазиимпульсом р = hk и энергией [25G-25.jpg] (см. Корпускулярноволновоп дуализм). Квазичастица, соответствующая волне нормальных колебаний, наз. фононом. Квазиимпульс фонона во многом схож с импульсом свободной частицы. Скорость фонона РФ -групповая скорость волны:

Распределение фононов по энергиям в состоянии термодинамич. равновесия описывается функцией Планка:
[25G-26.jpg]
[25G-27.jpg]

где ftps - среднее число фононов сорта s (s = 1,2..., 3v) с квазиимпульсом р. Функцию Планка можно рассматривать как функцию распределения идеального газа фононов, подчиняющихся статистике Бозе - Эйнштейна (см. Статистическая физика). Хим. потенциал фононов равен нулю, что указывает на зависимость числа фононов от темп-ры. При высоких темп-pax число фононов растёт с темп-рой линейно, а при низких - пропорционально Г3, что отражает уменьшение амплитуды тепловых колебаний атомов с уменьшением темп-ры. В действительности газ фононов не является идеальным, т. к. фононы взаимодействуют друг с другом (ангарионизм колебаний); чем выше темп-ра, тем это взаимодействие существеннее. Взаимодействие фононов описывается в теории введением для них длины свободного пробега, к-рая возрастает при понижении темп-ры. Фононы взаимодействуют не только друг с другом, но и с др. квазичастицами, а также со всеми дефектами кристалла (в частности, рассеиваются границами Т. т.).

В аморфных телах тепловое движение частиц также носит колебательный характер. Однако фононы удаётся ввести только для низкочастотных акустич. колебаний, когда на длине волны расположено много атомов, колеблющихся синфазно, и их взаимное расположение не слишком существенно. Макс, частоты колебаний в аморфных телах мало отличаются от макс, частот в кристаллах, т. к. определяются силами взаимодействия между ближайшими атомами. В результате этого, а также наличия ближнего порядка в аморфных телах плотность колебательных состояний близка к плотности колебательных состояний кристаллов.

Диффузия а