БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431тупает в реакцию со мн. соединениями, замещает водород в предельных углеводородах и присоединяется к ненасыщенным соединениям. X. вытесняет бром и иод из их соединений с водородом и металлами; из соединений X. с этими элементами он вытесняется фтором. Щелочные металлы в присутствии следов влаги взаимодействуют с X. с воспламенением, большинство металлов реагирует с сухим X. только при нагревании. Сталь, а также нек-рые металлы стойки в атмосфере сухого X. в условиях невысоких темп-р, поэтому их используют для изготовления аппаратуры и хранилищ для сухого X. Фосфор воспламеняется в атмосфере X., образуя РС13, а при дальнейшем хлорировании -РСl5; сера с X. при нагревании даёт S2C12, SCl2 и др. SnClm. Мышьяк, сурьма, висмут, стронций, теллур энергично взаимодействуют с X. Смесь X. с водородом горит бесцветным или жёлто-зелёным пламенем с образованием хлористого водорода (это цепная реакция).

Максимальная темп-pa водородно-хлор-ного пламени 2200°С. Смеси X. с водородом, содержащие от 5,8 до 88,5% Н2, взрывоопасны.

С кислородом X. образует окислы: С12О, СlO2, С12О6, Сl2О7, С12О8 (см. Хлора окислы), а также гипохлориты (соли хлорноватистой кислоты), хлориты, хлораты и перхлораты. Все кислородные соединения хлора образуют взрывоопасные смеси с легко окисляющимися веществами. Окислы X. малостойки и могут самопроизвольно взрываться, гипохлориты при хранении медленно разлагаются, хлораты и перхлораты могут взрываться под влиянием инициаторов.

X. в воде гидролиз у ется, образуя хлорноватистую и соляную к-ты: С12 + + Н2О->-<-НС1О + НС1. При хлорировании водных растворов щелочей на холоду образуются гипохлориты и хлориды: 2NaOH + C12= NaCIO + NaCl + Н2О, а при нагревании - хлораты. Хлорированием сухой гидроокиси кальция получают хлорную известь.

При взаимодействии аммиака с X. образуется трёххлористый азот (см. Хлориды азота). При хлорировании органич. соединений X. либо замещает
[2822-2.jpg]
личные хлорсодержащие органич. соединения (см. Хлорирование).

X. образует с др. галогенами межгалогенные соединения. Фториды C1F, C1F3, ClF3 очень реакционноспособны; напр., в атмосфере C1F3 стеклянная вата самовоспламеняется. Известны соединения хлора с кислородом и фтором -оксифториды X.: C1O3F, C1O2F3, C1OF, C1OF3 и перхлорат фтора FC1O4.

Получение. X. начали производить в пром-сти в 1785 взаимодействием соляной к-ты с двуокисью марганца или пиролюзитом. В 1867 англ, химик Г. Ди-кон разработал способ получения X. окислением НСl кислородом воздуха в присутствии катализатора. С кон. 19 - нач. 20 вв. X. получают электролизом водных растворов хлоридов щелочных металлов. По этим методам в 70-х гг. 20 в. производится 90-95% X. в мире. Небольшие кол-ва X. получаются попутно при произ-ве магния, кальция, натрия и лития электролизом расплавленных хлоридов. В 1975 мировое произ-во X. составляло ок. 25 млн. т. Применяются два осн. метода электролиза водных растворов NaCl: 1) в электролизёрах с твёрдым катодом и пористой фильтрующей диафрагмой; 2) в электролизёрах с ртутным катодом. По обоим методам на графитовом или окисном титано-рутение-вом аноде выделяется газообразный X. По первому методу на катоде выделяется водород и образуется раствор NaOH и NaCl, из к-рого последующей переработкой выделяют товарную каустич. соду. По второму методу на катоде образуется амальгама натрия, при её разложении чистой водой в отдельном аппарате получаются раствор NaOH, водород и чистая ртуть, к-рая вновь идёт в производство. Оба метода дают на 1 т X. 1,125 га NaOH.

Электролиз с диафрагмой требует меньших капиталовложений для организации произ-ва X., даёт более дешёвый NaOH. Метод с ртутным катодом позволяет получать очень чистый NaOH, но потери ртути загрязняют окружающую среду. В 1970 по методу с ртутным катодом производилось 62,2% мировой выработки X., с твёрдым катодом 33,6% и пр. способами 4,2%. После 1970 начали применять электролиз с твёрдым катодом и ионообменной мембраной, позволяющий получать чистый NaOH без использования ртути.

Применение. Одной из важных отраслей хим. пром-сти является хлорная пром-сть. Осн. количества X. перерабатываются на месте его произ-ва в хлорсодержащие соединения. Хранят и перевозят X. в жидком виде в баллонах, бочках, ж.-д. цистернах или в специально оборудованных судах. Для индустриальных стран характерно следующее примерное потребление X.: на произ-во хлорсодержа-щих органич. соединений - 60-75%; неорганич. соединений, содержащих X., -10-20%; на отбелку целлюлозы и тканей- 5-15%; на санитарные нужды и хлорирование воды - 2-6% от общей выработки.

X. применяется также для хлорирования нек-рых руд с целью извлечения титана, ниобия, циркония и др.

О хлорсодержащих органич. соединениях см. Винилхлорид, Хлоропрен, Ви-нилиденхлорид, Четырёххлористый углерод, Хлороформ, Метиленхлорид,Тет-рахлорэтан, Трихлорэтилен, Хлорбензол и др. О хлорсодержащих неорганич. соединениях см. Соляная кислота. Натрия хлорид. Калия хлорид, Кальция хлорид, Хлора окислы, Хлорная известь и др. Л. М. Якименко.

X. в организме. X. - один из биогенных элементов, постоянный компонент тканей растений и животных. Содержание X. в растениях (много X. в галофитах) - от тысячных долей процента до целых процентов, у животных -десятые и сотые доли процента. Суточная потребность взрослого человека в X. (2-4 г) покрывается за счёт пищевых продуктов. С пищей X. поступает обычно в избытке в виде хлорида натрия и хлорида калия. Особенно богаты X. хлеб, мясные и молочные продукты. В организме животных X. - осн. осмотически активное вещество плазмы крови, лимфы, спинномозговой жидкости и нек-рых тканей. Играет роль в водно-солевом обмене, способствуя удержанию тканями воды. Регуляция кислотно-щелочного равновесия в тканях осуществляется наряду с др. процессами путём изменения в распределении X. между кровью и др. тканями. X. участвует в энергетич. обмене у растений, активируя как окислительное фосфорилирование, так и фотофосфорилирование. X. положительно влияет на поглощение корнями кислорода. X. необходим для образования кислорода в процессе фотосинтеза изолированными хлоропластами. В состав большинства питательных сред для искусственного культивирования растении X. не входит. Возможно, для развития растений достаточны весьма малые концентрации X.

М. Я. Школьник.

Отравления X. возможны в хим., цел.-бум., текст., фармацевтич. пром-сти и др. X. раздражает слизистые оболочки глаз и дыхат. путей. К первичным воспалительным изменениям обычно присоединяется вторичная инфекция. Острое отравление развивается почти немедленно. При вдыхании ср. и низких концентраций X. отмечаются стеснение и боль в груди, сухой кашель, учащённое дыхание, резь в глазах, слезотечение, повышение содержания лейкоцитов в крови, темп-ры тела и т. п. Возможны бронхопневмония, токсич. отёк лёгких, депрессивные состояния, судороги. В лёгких случаях выздоровление наступает через 3-7 сут. Как отдалённые последствия наблюдаются катары верхних дыхательных путей, рецидивирующий бронхит, пневмосклероз и др.; возможна активизация туберкулёза лёгких. При длит, вдыхании небольших концентрации X. наблюдаются аналогичные, но медленно развивающиеся формы заболевания. Профилактика отравлений: герметизация производств, оборудования, эффективная вентиляция, при необходимости использование противогаза. Предельно допустимая концентрация X. в воздухе производств, помещений 1 мг!м3. Произ-во X., хлорной извести и др. хлорсодержащих соединений относится к проиэ-вам с вредными условиями труда, где по сов. законодательству ограничено применение труда женщин и несовершеннолетних.

Л. А. Каспаров.

Лит.: Якименко Л. М., Производство хлора, каустической соды и неорганических хлорпродуктов, М., 1974; Некрасов Б. В., Основы общей химии, 3 изд., [т.] 1, М., 1973; Вредные вещества в промышленности, под ред. Н. В. Лазарева, 6 изд., т. 2, Л., 1971; Comprehensive inorganic chemistry, ed. J. С. Bailar [a. o.], v. 1 - 5, Oxf.- [a. o.], 1973.

ХЛОРА ОКИСЛЫ, соединения хлора с кислородом: С12О, С1О2, С12Об, С12О7, С12О8. X. окись (оксид хлора, ангидрид хлорноватистой кислоты), С12О, жёлто-коричневый газ с резким запахом, похожим на запах хлора; tпл -121 0С; tкип 2 °С. Энергичный окислитель; нестойкое соединение, в обычных условиях медленно разлагается, в концентрированном и сжиженном виде может самопроизвольно взрываться: 2СlО = 2С12 + + О2. Хорошо растворима в воде (в 1 объёме воды ок. 200 объёмов С12О) и четырёххлористом углероде; при растворении в воде образуется хлорноватистая к-та НС1О. Может быть получена взаимодействием хлора со свежеосаждённой сухой окисью ртути: 2HgO + 2Cl2 = HgCl2 + + С12О. В пром-сти получают водные растворы окиси хлора хлорированием карбонатов щелочных или щёлочноземельных металлов в воде. Используют окись хлора для произ-ва гипохлорита кальция.

X. двуокись (диоксид хлора, смешанный ангидрид хлористой кислоты и хлорноватой кислоты), С1О2, желтовато-оранжевый газ с неприятным запахом; tпл -59 0С; Гкнп 10 0С. Энергичный окислитель (особенно в кислой среде); в концентрированном виде взрывается; на свету постепенно разлагается, выше 50°С р