БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431е представления в химии. Было известно, что мн. соли металлов обладают способностью соединяться с др. солями, водой, аммиаком или др. молекулами. Хлорид калия и хлорид платины (IV) образуют, например, хорошо кристаллизующуюся соль 2KCl*PtCL4, а иодид кобальта (III) присоединяет аммиак и образует CoI3-6NH3. Такого рода соединения, однако, не укладывались ни в одну теорию валентности, и их существование приписывалось действию слабых остаточных сил, второстепенных по сравнению с силами обычных X. с. На основании изучения огромного числа таких соединений Вернер показал, что по составу и свойствам их можно систематизировать на базе нового допущения, согласно к-рому атом металла обладает способностью соединяться с определённым числом (обычно с четырьмя или шестью) др. атомов, ионов или молекул и координировать их вокруг себя в определённом геометрич. порядке. Вернер смог представить убедительные доказательства правильности своего предположения (оно подтверждалось гл. оор. фактом существования изомеров) о том, что большинство комплексов с координационным числом 6, таких, как гекса-хлороплатинат-ион [PtCl6]2- и гексамми-но-кобальт (III)- ион [Со (NH3)6]3+, имеют октаэдрическую конфигурацию, при к-рой шесть групп, окружающих центральный атом, располагаются вокруг него по вершинам правильного октаэдра. Он показал также, что ряд комплексов с координационным числом 4 имеет тетраэдрическую конфигурацию, например [Zn (NH3)4]2+, тогда как другие - плоскую квадратную конфигурацию, характерную для комплексов Pd (II) и Pt (II), напр, для [PtCl4]2-. Общее признание теория Вернера получила в 1911, после его предсказания и экспериментального подтверждения существования оптич. изомерии ряда октаэдрически координированных комплексов. В 1920 амер. исследователи Р. У. Г. Уайкоф и Р. Г. Дикинсон рентгенографически определили структуры кристаллов K2PtCl6, K2Pt(CN)4 и др. координационных комплексов, окончательно подтвердив существование октаэдрических и плоскоквадратных конфигураций.

Теория этих комплексов была развита в 1931 Полингом. Он показал, что гибридизация s-орбитали и трёх р-орбиталей приводит к образованию четырёх тетра-эдрических орбиталей, тогда как гибридизация этих четырёх орбиталей с двумя d-орбиталями приводит к набору из шести гибридных spd-орбиталей, направленных к вершинам правильного октаэдра, а с одной d-орбиталью образуются четыре гибридные sр2d-орбитали, направленные к вершинам квадрата. Число электронов в Pd(IV) и Pt(IV) таково, что две d-op-битали могут участвовать в образовании связи и, следовательно, образуются ок-таэдрич. комплексы с координационным числом 6, тогда как Pd(II) и Pt(II) с двумя избыточными электронами имеют только одну доступную d-орбиталь и могут образовывать лишь квадратные плоские комплексы. Из такого рассмотрения вытекало, что ковалентные комплексы Ni(II) должны иметь плоскую квадратную конфигурацию и быть диамагнитными, тогда как большинство соединений никеля парамагнитны. Эти предсказания сразу же были подтверждены результатами измерения магнитных свойств и определения кристаллической структуры координационных соединений никеля.

Химические связи в металлах. Природа X. с. в металлах и интерметаллич. соединениях остаётся и в 1977 выясненной не полностью. Представляется, однако, правильным описывать металлы и интерметаллич. соединения как катионы металла, связанные воедино валентными электронами, обладающими значит, свободой движения в данном металле. Число электронов одного атома, участвующих в связывании металлич. кристалла как целого, можно назвать "металлической валентностью" данного атома.

Металлич. валентность щелочных металлов 1, а щёлочноземельных 2. Значения для переходных металлов не вполне надёжны, однако, судя по прочности, твёрдости и точкам плавления, значения эти возрастают от 3 для Sc приблизительно до 6 для Сr и последующих элементов, а затем понижаются для Сu и Zn. Магнитные свойства лантаноидов свидетельствуют о том, что металлич. валентность их равна 3 (исключение составляют Еu и Yb, для к-рых она равна 2); парамагнитная восприимчивость Еu и Yb такая же, как и у их двухвалентных солей, тогда как для остальных лантаноидов она такая же, как у их трёхвалентных солей.

Координационное число атома в металле больше числа связывающих электронов. Связи в металлах могут быть описаны как ковалентные связи, резонирующие между нек-рым большим числом межатомных положений. Так, напр., алюминий имеет кубич. структуру с плотнейшей упаковкой, в к-рой каждый атом окружён двенадцатью соседями. Валентность алюминия равна 3 и, следовательно, связь с каждым из соседних атомов может быть описана как связь кратности 1/3.

Для того чтобы валентные связи могли резонировать между различными поло жениями, мн. или большинство атомов должны иметь соответствующие орбитали связи, обычно не занятые электроном. Такие орбитали можно назвать "металлическими орбиталями". Характерной особенностью металлов является то, что большинство атомов в них обладают такой орбиталью. Олово, напр., с четырьмя электронами на внешних s- и р-орбиталях может распределить эти четыре электрона между четырьмя sp3 -орбиталями и образовать т. о. четыре ковалентные связи. Но тогда оно не будет иметь дополнительной орбитали и, следовательно, образующаяся структура не должна быть металлической. Модификация олова, наз. серым оловом, действительно имеет структуру алмаза, в к-рой каждый атом связан с четырьмя тетраэдрически расположенными соседями и к-рая не является металлической. Длина связи здесь такая же, как длина одинарной связи.

В белом олове, металлич. модификации олова, каждый атом имеет шесть соседей с длиной связи, отвечающей валентности ок. 2,5 для атома олова. Если 2 из 4 внешних электронов атома олова образуют неподелённую пару, занимая 5s-орбиталь, то оставшиеся два электрона могут занять две из трех р-орбиталей и участвовать в образовании связи. При этом одна р-орбиталь остаётся свободной и может служить металлич. орбиталью. По данным наблюдений, длина связи в белом олове отвечает металлич. валентности 2,5, а не 2, что указывает на наличие резонанса (до 25% ) с четырёхвалентной структурой олова.

Если доступны d-орбитали, то могут образовываться гибридные spd-орбитали, к-рые ещё лучше подходят для образования связи, поскольку имеют большую концентрацию в направлении данной связи. В тех случаях, когда лучшие из возможных хр-орбиталей образуют между собой тетраэдрический угол 109°28', лучшие spd-орбитали образуют углы 73 и 133°.

Ковалентность переходных металлов. Переходные металлы с пятью d-орбита-лями, одной 5-орбиталью и тремя р-ор-биталями во внешней оболочке могут образовывать 9 гибридных spd-орбиталей (под углами ок. 73 и 133° одна по отношению к другой) и, следовательно, могут образовывать 9 ковалентных связей в том случае, если данный атом имеет

9 электронов во внешней оболочке. Примером может служить Os4O4(CO)12. Структуру этого вещества можно описать как имеющую четыре атома осмия в четырёх противоположных вершинах куба и четыре атома кислорода в др. четырёх вершинах. Каждый атом кислорода передаёт электрон атому осмия. У этого атома кислорода, т. о., остаётся пять валентных электронов, и он может образовывать три ковалентные связи, а атом осмия имеет девять валентных электронов и может образовывать девять ковалентных связей. Каждый атом осмия образует три связи с прилегающими атомами кислорода и двойную связь с атомом углерода каждой из трёх прилегающих карбонильных групп, достигая, т. о., своей максимальной валентности 9. Для большинства карбонилов переходных металлов хим. формулы отвечают использованию всех 9 внешних spd-орбиталей для образования связей или неподелённых электронных пар. Напр., атом никеля имеет 10 внешних электронов. В Ni(CO)4 8 из них используются для образования двойных связей с 4 карбонильными группами. На образование этих 4 двойных связей идут 8 из 9 spd-орбиталей, а оставшуюся одну занимает неподелённая пара.

8 Fe(CO)5 атом железа приобретает электрон от одной карбонильной группы, с к-рой он образует одинарную связь Fe-С = О; оставшиеся 8 орбиталей и электроны он использует на образование двойных связей с атомами углерода четырёх других карбонильных групп. В Сr(СО)в атом Сr получает 3 электрона от трёх карбонильных групп, что даёт

9 валентных электронов. Он образует одинарные связи с этими тремя группами и двойные связи с другими тремя карбонильными группами. Частично ионный характер хром-углеродных и углерод-кислородных связей, устанавливаемый по разности электроотрицательностей данных элементов, достаточен для передачи большей части избыточного отрицательного заряда электронов от хрома к кислороду так, что атомы остаются почти нейтральными, удовлетворяя принципу электронейтральности.

Четверные связи. Атомы углерода могут образовывать тройные связи, но не могут образовать четверных связей, поскольку четвёртая связь углерода направлена в сторону, противоположную направлению трёх остальных связей. Переходные металлы, однако, могут образовывать связи такой кратности благодаря тому, что четыре spd-орбитали под углом 73° друг к другу (около 133° для двух пар) направлены по одну сторону