БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431ющего большой угол обзора (порядка 60°). Совр. приборы для этой Ф. а., наз. аэросъёмочными тепловизо-рами, могут давать аэроснимки самых различных масштабов с геометрич. разрешением деталей на местности ок. 0,001 от высоты съёмки и передачей температурных различий в 0,5 - 1 °С. Поскольку тепловые контрасты на земной поверхности подвержены значит. изменениям - от сезона к сезону и в течение суток, в зависимости от экспозиции по отношению к солнцу и различий в тепловой инерции тел, работы искусств. источников тепла, а также от метеорологич. обстановки (особенно облачности),- для выявления свойств изучаемых объектов в ряде случаев целесообразна неоднократная (в т. ч. за пределами светового дня) инфратепловая Ф. а. одного и того же участка местности. Таким образом, высокая изменчивость регистрируемых величин, предопределяя значительные трудности при выборе параметров съёмки, вместе с тем даёт дополнительные возможности для воспроизведения объектов на аэроснимках. Данный вид съёмки эффективен при создании карт вулканич. деятельности (зон температурных аномалий, выходов лавы, нагретых газов и вод) и мерзлотных явлений, выделении увлажнённых грунтов, исследованиях температурного режима и загрязнённости водоёмов и характера мор. льдов, обнаружении водотоков, закрытых растительностью, оконтуривании мест возгорания под землёй и на поверхности (в отвалах, лесных массивах и др.), проверке энергосистем и дренажных сооружений, а также при периодич. контроле состояния посевов.

Радиолокационная (радарная) аэросъёмка относится к числу активных Ф. а. и предназначена для регистрации отражённых наземными объектами электромагнитных волн радиодиапазона (от неск. мм до неск. м), источником излучения и приёмником к-рых служит установленная на носителе радиолокац. система. В картографии наибольшее применение находит радиолокационная станция бокового обзора, работающая в интервале волн 1-З см. Сканирование ведётся с помощью особого антенного устройства и обеспечивает получение изображения местности в виде двух широких полос, параллельных линии полёта. Преобладающие масштабы радиолокац. аэроснимков (см. вклейку к ст. Аэроснимок) 1:60 000- 1 : 400 000. Наибольшее разрешение деталей на местности 3-5 м. Характер воспроизведения на этих аэроснимках наземных объектов определяется и различной интенсивностью отражения ими радиоволн, к-рая в свою очередь зависит от свойств и формы объектов, крутизны и направления склонов рельефа. Изменяя, с учётом этих особенностей, осн. параметры станций (длину волн, частоту и форму импульсов), добиваются требующегося разделения на аэроснимках изображений изучаемых объектов. Радиолокац. Ф. а. может выполняться вне зависимости от времени суток и состояния атмосферы, т. е. является всепогодной. Благодаря способности радиоволн проникать на десятки см в земную поверхность осн. сфера её применения - геологич. разведка и изучение льдов. Особенно существенно, что при этой аэросъёмке, по сравнению с обычной фотографической, обеспечивается значительно лучшая дешифрируемость разрывных тектонич. нарушений, характера горных пород под растительностью, снегом и поверхностными наносами, механич. состава (в особенности размеров частиц) последних и наличия примесей металлов, структуры ледовых образований, трещин и русел талых вод в толще льда. На радиолокац. аэроснимках чётче воспроизводятся наземные объекты, приуроченные к глубоко затенённым участкам. Поскольку по этим снимкам может быть построена стереоскопич. модель местности (с точностью определения высот до 15 м), они используются при изучении нек-рых труднодоступных р-нов (полярные пустыни, экваториальные джунгли с постоянной облачностью и др.) для создания топографических карт обзорного характера.

Лит.: Смирнов Л. Е., Аэрокосмические методы географических исследований, Л., 1975; Xарин Н. Г., Дистанционные методы изучения растительности, М., 1975; Богомолов Л. А., Дешифрирование аэроснимков, М., 1976; Применение новых видов аэросъемок при геологических исследованиях, Л., 1976; Многозональная аэрокосмическая съемка и ее использование при изучении природных ресурсов, М., 1976; Remote sensing. Techniques for environmental analysis, Santa Barbara, 1974; Manual of Remote sensing, t. 1 - 2, Waschington, 1975. См. также лит. к статье Космическая съёмки.

Л. М. Гольдман.

ФОТОЭЛЕКТРОННАЯ СПЕКТРОСКОПИЯ, метод изучения строения вещества, основанный на измерении энер-гетич. спектров электронов, вылетающих при фотоэлектронной эмиссии. Согласно закону Эйнштейна, сумма энергии связи вылетающего электрона (работы выхода) и его кинетич. энергии равна энергии падающего фотона hv (h - Планка постоянная, v - частота падающего излучения). По спектру электронов можно определить энергии связи электронов и их уровни энергии в исследуемом веществе.

В Ф. с. применяются монохроматич. рентгеновское или ультрафиолетовое излучения с энергией фотонов от десятков тысяч до десятков эв (что соответствует длинам волн излучения от десятых долей А до сотен А). Спектр фотоэлектронов исследуют при помощи электронных спектрометров высокого разрешения (достигнуто разрешение до десятых долей эв в рентгеновской области и до сотых долей эв в ультрафиолетовой области).

Метод Ф. с. применим к веществу в газообразном, жидком и твёрдом состояниях и позволяет исследовать как внеш., так и внутр. электронные оболочки атомов и молекул, уровни энергии электронов в твёрдом теле (в частности, распределение электронов в зоне проводимости). Для молекул энергии связи электронов во внутр. оболочках образующих их атомов зависят от типа химич. связи (химич. сдвиги), поэтому Ф. с. успешно применяется в аналитич. химии для определения состава вещества и в физич. химии для исследования химич. связи. В химии метод Ф. с. известен под назв. ЭСХА - электронная спектроскопия для химич. анализа (ESCA - electronic spectroscopy for chemical analysis).

Лит.: Вилесов Ф. И., Курбатов Б. Л., Теренин А. Н., "Докл. АН СССР", 1961, т. 138, с. 1329-32; Электронная спектроскопия, пер. с англ., М., 1971. М. Л. Ельяшевич.

ФОТОЭЛЕКТРОННАЯ ЭМИССИЯ, внешний фотоэффект, испускание электронов твёрдыми телами и жидкостями под действием электромагнитного излучения (фотонов) в вакуум или др. среды. Практич. значение в большинстве случаев имеет Ф. э. из твёрдых тел (металлов, полупроводников, диэлектриков) в вакуум. Осн. закономерности Ф. э. состоят в следующем: 1) кол-во испускаемых электронов пропорционально интенсивности излучения; 2) для каждого вещества при определ. состоянии его поверхности и темп-ре Т->0 К существует порог - миним. частота w0 (или макс. длина волны Чо) излучения, за к-рой Ф. э. не возникает; 3)макс. кинетич. энергия фотоэлектронов линейно возрастает с частотой излучения и не зависит от его интенсивности.

Ф. э.- результат 3 последовательных процессов: поглощения фотона и появления электрона с высокой (по сравнению со средней) энергией; движения этого электрона к поверхности, при к-ром часть энергии может рассеяться; выхода электрона в др. среду через поверхность раздела. Количеств. характеристикой Ф. э. является квантовый выход Y - число вылетевших электронов, приходящееся на 1 фотон излучения, падающего на поверхность тела. Величина У зависит от свойств тела, состояния его поверхности и энергии фотонов.

Ф. э. из металлов возникает, если энергия фотона hw (h - Планка постоянная, w -частота излучения) превышает работу выхода металла eф. Последняя для чистых поверхностей металлов > 2 эв (а для большинства из них > 3 эв), поэтому Ф. э. из металлов (если работа выхода не снижена спец. покрытием поверхности) может наблюдаться в видимой и ультрафиолетовой (для щелочных металлов и бария) или только в ультрафиолетовой (для всех др. металлов) областях спектра. Вблизи порога Ф. э. для большинства металлов У~ 10-4 электрон/фотон. Малая величина У обусловлена тем, что поверхности металлов сильно отражают видимое и ближнее ультрафиолетовое излучение (коэфф. отражения R>90% ), так что в металл проникает лишь малая доля падающего на него излучения. Кроме того, фотоэлектроны при движении к поверхности сильно взаимодействуют с электронами проводимости, к-рых в металле много (~1022 см-3), и быстро рассеивают энергию, полученную от излучения. Энергию, достаточную для совершения работы выхода, сохраняют только те фотоэлектроны, к-рые образовались вблизи поверхности на глубине, не превышающей неск. нм (рис., а). Менее "энергичные" фотоэлектроны могут пройти без потерь энергии в десятки раз больший путь в металле, но их энергия недостаточна для преодоления поверхностного потенциального барьера и выхода в вакуум.

С увеличением энергии hw фотонов У металлов возрастает сначала медленно. При hw = 12 эв У чистых металлич. плёнок (полученных испарением металла в высоком вакууме) составляет для А1 0,04, для Bi - 0,015 электрон/фотон.

При hw> 15 эв R резко падает (до 5% ), а У увеличивается и у нек-рых металлов (Pt, W, Sn, Та, In, Be, Bi) достигает 0,1 - 0,2 электрон/фотон. Случайные загрязнения могут сильно снизить ф, вследствие чего порог Ф. э. сдвигается в сторону более длинных волн, и Y в этой области может сильно возрасти. Резкого увеличения У и сдвига