БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431воздействия внеш. магнитного поля, одноосного сжатия и др.

Объёмная Ф. в однородном полупроводнике, обусловленная неодинаковой генерацией в нём фотоносителей, наз. диффузионной, или фотоэдс Дембера. При неравномерном освещении полупроводника или облучении его сильно поглощающимся (и быстро затухающим в глубине кристалла) излучением концентрация фотоносителей велика вблизи облучаемой грани и мала или равна нулю в затемнённых участках. Фотоносители диффундируют от облучаемой грани в область, где их концентрация меньше, и если подвижности электронов проводимости и дырок неодинаковы, в объёме полупроводника возникает пространств. заряд, а между освещённым и затемнённым участками - фотоэдс Дембера. Величина этой Ф. между двумя точками полупроводника 1 и 2 может быть вычислена по формуле:

где k - Больцмана постоянная, е- заряд электрона, Т - темп-pa, мэ и мд - подвижности электронов и дырок, с1 и с2- электропроводность в точках 1 и 2. Фотоэдс Дембера при данной интенсивности освещения тем больше, чем больше разность подвижностей электронов и дырок и чем меньше электропроводность полупроводника в темноте. Излучение, генерирующее в полупроводнике только основные носители заряда, не создаёт фотоэдс Дембера, так как в этом случае эдс в объёме компенсируется равной ей по величине и противоположной по знаку эдс, образующейся на контакте полупроводника с электродом. Фотоэдс Дембера в обычных полупроводниках мала и практич. применения не имеет.

Вентильная (барьерная) Ф. возникает в неоднородных по химич. составу или неоднородно легированных примесями полупроводниках, а также на контакте полупроводника с металлом. В области неоднородности в полупроводнике существует внутр. электрич. поле, к-рое ускоряет генерируемые излучением неосновные и замедляет основные неравновесные носители заряда. В результате фотоносители разных знаков пространственно разделяются. Разделение электронов и дырок внутр. полем эффективно, когда неоднородность не слишком плавная, так что на длине порядка диффузионной длины неосновных носителей заряда разность химических потенциалов превышает kT/e (при комнатной темп-ре kT/e = 0,025 эв). Вентильная Ф. может возникать в полупроводнике под действием света, генерирующего и электроны, и дырки или хотя бы только неосновные носители. Для практич. применений особенно важна вентильная Ф., возникающая в электронно-дырочном переходе или полупроводниковом гетеропереходе. Она используется в фотоэлектронных приборах (фотовольтаических элементах, солнечных элементах). По величине вентильной Ф. также обнаруживают слабые неоднородности в полупроводниковых материалах.

Ф. может возникать также в однородном полупроводнике при одновременном одноосном сжатии и освещении (фотопьезоэлектрический эффект). Она появляется на гранях, перпендикулярных направлению сжатия, её величина и знак зависят от направления сжатия и освещения относительно кри-сталлографич. осей. Ф. пропорциональна давлению и интенсивности излучения. В этом случае Ф. обусловлена анизотропией коэфф. диффузии фотоносителей, вызванной одноосной деформацией кристалла. При неоднородном сжатии и одновременном освещении полупроводника Ф. может быть обусловлена неодинаковым в разных частях кристалла изменением ширины запрещённой зоны под действием давления (тензорезистивный эффект).

В полупроводнике, помещённом в магнитное поле и освещённом сильно поглощающимся светом так, что градиент концентрации фотоносителей (и их диффузионный поток) возникает в направлении, перпендикулярном магнитному полю, электроны и дырки разделяются вследствие их отклонения магнитным полем в противоположных направлениях (см. Кикоина - Носкова эффект).

Сов. физик Б. И. Давыдов (1937) установил, что Ф. может возникать и при генерации только осн. носителей заряда (или при поглощении электронами проводимости излучения), если энергия фотоносителей заметно отличается от энергии др. носителей заряда. Обычно такая Ф. возникает в чистых полупроводниках с высокой подвижностью электронов при очень низких темп-pax. Ф. в этом случае обусловлена зависимостью подвижности и коэфф. диффузии электронов от их энергии. Ф. этого типа имеет заметную величину в InSb и-типа, охлаждённом до темп-ры жидкого гелия.

При поглощении излучения свободными носителями заряда в полупроводнике вместе с энергией фотонов поглощается их импульс. В результате электроны приобретают направленное движение относительно кристаллич. решётки и па гранях кристалла, перпендикулярных потоку излучения, появляется Ф. светового давления. Она мала, но вместе с тем очень мала и её инерционность (порядка 10-11 сек). Ф. светового давления используется в быстродействующих приёмниках излучений, предназначенных для измерения мощности и формы импульсов излучения лазеров.

Лит.: Рывкин С. М., Фотоэлектрические явления в полупроводниках, М., 1963; Тауц Ян, Фото- и термоэлектрические явления в полупроводниках, пер. с чеш., М., 1962; Фотопроводимость. Сб. ст., М., 1967. Т. М. Лифшиц.

ФОТОЭЛЕКТРИЧЕСКАЯ ЗВЁЗДНАЯ ВЕЛИЧИНА, см. Звёздная величина.

ФОТОЭЛЕКТРИЧЕСКАЯ СПЕКТРОСКОПИЯ, определение химич. состава примесей в полупроводниках и изучение их энергетической структуры по спектрам примесной фотопроводимости. Примесный атом в полупроводнике может находиться в основном (невозбуждённом) или одном из возбуждённых энерге-тич. состояний. Спектр этих состояний специфичен для каждого химич. элемента примеси в данном полупроводнике. Если облучать полупроводник монохро-матич. излучением, плавно изменяя частоту со, т. е. энергию фотонов Йсо (где h- Планка постоянная), то всякий раз, когда hw будет совпадать с энергетич. зазором между основным и одним из возбуждённых состояний, атом примеси соответствующего сорта будет переходить в это возбуждённое состояние, поглощая фотон. Можно подобрать темп-ру кристалла так, что энергия его тепловых колебаний окажется достаточной для ионизации возбуждённого атома (но недостаточной для ионизации невозбуждённого атома). Тогда будет происходить двухступенчатая фототермич. ионизация примесных атомов: сначала оптич. возбуждение, а затем термич. ионизация. Её результатом является выброс электрона или дырки из атома примеси в зону проводимости и соответственно - фотопроводимость.

Спектр примесной фотопроводимости состоит из набора пиков, каждый из к-рых соответствует энергии фотонов, вызывающих переход в одно из возбуждённых состояний атомов примеси определ. сорта (см. рис.). Высоты пиков в широких пределах изменения концентраций примесей не зависят от этих концентраций. Благодаря этому Ф. с. позволяет обнаруживать ничтожно малые кол-ва примесей. Например, в образце Ge, спектр которого приведён на рисунке, суммарная концентрация примесных атомов составляет 10-11 % от общего числа атомов. Теоретич. предел чувствительности Ф. с. ещё на несколько порядков ниже.

Лит.: Лифшиц Т. М., Лихтман

Н. П., Сидоров В. И., Фотоэлектрическая спектроскопия примесей в полупроводниках, "Письма в редакцию ЖЭТФ", 1968, т. 7, в. 3, с. 111-14; Коган Ш. М., Седунов Б. И., Фототермическая ионизация примесного центра в кристалле, "Физика твердого тела", 1966, т. 8, в. 8, с. 2382-89; Быкова Е. М., Лифшиц Т. М., Сидоров В. И., Фотоэлектрическая спектроскопия, полный качественный анализ остаточных примесей в полупроводнике, "Физика и техника полупроводников", 1973, т. 7, № 5, с. 986-88; Коgan Sh. M., Lifshits,

Т. М., Photoelectric Spectroscopy - a new Method of Analysis or Impurities in Semiconductors, "Physica status solidi (a)", 1977, 39, № 1, p. 11. Т. М. Лифшиц.

ФОТОЭЛЕКТРИЧЕСКИЕ ЯВЛЕНИЯ, электрич. явления, происходящие в веществах под действием электромагнитного излучения. Поглощение электромагнитной энергии в веществе происходит всегда отд. порциями - квантами (фотонами), равными Йсо (И-Планка постоянная, w - частота излучения). Ф. я. возникают, когда энергия поглощённого фотона затрачивается на квантовый переход электрона в состояние с большей энергией. В зависимости от соотношения между энергией фотонов и характерными энергиями вещества (энергией возбуждения атомов и молекул, энергией их ионизации, работой выхода электронов из твёрдого тела и т. п.) поглощение электромагнитного излучения может вызывать разные Ф. я. Если энергии фотона хватает лишь для возбуждения атома, то может возникнуть изменение диэлектрической проницаемости вещества (фотодиэлектрический эффект). Если энергия фотона достаточна для образования неравновесных носителей заряда в твёрдом теле - электронов проводимости и дырок, то изменяется электропроводность тела (см. Фотопроводимость). В неоднородных телах, напр/ в полупроводниках с неоднородным распределением примесей, в частности в области электронно-дырочного перехода, вблизи контакта двух разнородных полупроводников (см. Полупроводниковый гетеропереход), контакта полупроводник - металл, или при неоднородном облучении, а также в полупроводниках, помещённых в магнитное поле, возникает электродвижущая сила (см. Фотоэдс, Кикоина - Носкова эффект). Фотопроводимость и фотоэдс могут возникать также при поглощении фотонов электронами проводимости, в результате чего увеличивается их подвижность (см. Подви