БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431арные носители зарядов (электроны и дырки), к-рые разделяются электрич. полем коллекторного перехода. В результате в базовой области накапливаются осн. носители, что приводит к снижению потенциального барьера эмиттерного перехода и увеличению (усилению) тока через Ф. по сравнению с током, обусловленным переносом только тех носителей, к-рые образовались непосредственно под действием света.

Осн. параметрами и характеристиками Ф., как и др. фотоэлектрич. приборов (напр., фотоэлемента, фотодиода), являются: 1) интегральная чувствительность (отношение фототока к падающему световому потоку), у лучших образцов Ф. (напр., изготовленных по диффузионной планарной технологии) она достигает 10 а/лм; 2) спектральная характеристика (зависимость чувствительности к монохро-матич. излучению от длины волны этого излучения), позволяющая, в частности, установить длинноволновую границу применимости Ф.; эта граница (зависящая прежде всего от ширины запрещённой зоны полупроводникового материала) для германиевого Ф. составляет 1,7 мкм, для кремниевого - 1,1 мкм; 3) постоянная времени (характеризующая инерционность Ф.) не превышает неск. сотен мксек. Кроме того, Ф. характеризуется коэфф. усиления первоначального фототока, достигающим 102- 103.

Высокие надёжность, чувствительность и временная стабильность параметров Ф., а также его малые габариты и относит. простота конструкции позволяют широко использовать Ф. в системах контроля и автоматики - в качестве датчиков освещённости, элементов гальванич. развязки и т. д. (см. Приёмники излучения, Приёмники света, Оптрон). С 70-х гг. 20 в. разрабатываются полевые Ф. (аналоги полевых транзисторов).

Лит.: Амброзяк А., Конструкция и технология полупроводниковых фотоэлектрических приборов, пер. с польск., М., 1970. Ю. А. Кузнецов.

ФОТОТРАНСФОРМАТОР, прибор, позволяющий преобразовывать фотоснимок, полученный при наклонном положении оси фотоаппарата (напр., при аэрофотосъёмке) в горизонтальный аэроснимок заданного масштаба с целью составления фотоплана местности. На рис. 1

показана схема Ф.: Р - снимок, Е - горизонтальная (начальная) плоскость местности, а - угол наклона снимка, S - центр проекции, о - главная точка, J - главная точка схода, f - фокусное расстояние фотокамеры, S' - объектив, Е' - экран. Изображение снимка на экране Ф. не будет отличаться от горизонтального снимка, если: 1) объектив находится в плоскости главного вертикала Q на дуге окружности с радиусом

яние объектива; 4) главная плоскость объектива S'V, снимок и экран пересекаются по одной прямой; 5) расстояния d и d' от объектива до снимка и экрана

вдоль главной оптической оси удовлетво-

Для выполнения этих условий Ф. имеют инверсоры, позволяющие сократить количество устанавливаемых в приборе элементов. Изображение, полученное на экране, фиксируется на фотобумагу. Наибольшее применение имеют Ф., изготовляемые нар. предприятием " Карл Цейс" (ГДР) - Seg-I, Seg-IV и Rectimat

(рис. 2), фирмой "Оптон" (ФРГ) - Seg-V и "Вильд" (Швейцария) - Е-4. Лит. см. при ст. Фотограмметрия.

А. Н. Лобанов.

ФОТОТРИАНГУЛЯЦИЯ (от фото... и триангуляция), метод определения координат точек местности по фотоснимкам. Назначением Ф. является сгущение геодезической сети с целью обеспечения снимков опорными точками, необходимыми для составления топографической карты, и решения ряда инж. задач. Ф. может быть пространственной, если определяют все три координаты точек, или плановой, если определяют только две координаты, характеризующие положение точки в горизонтальной плоскости. Для пространственной Ф. необходимо построить общую модель местности, изобразившейся на данных снимках, и ориентировать её относительно геодезической системы координат (рис. 1).

Эту задачу решают путём внешнего ориентирования снимков, т. е. установки их в такое положение, при к-ром соответственные проектирующие лучи пересекаются, а координаты полевых опорных точек равны их заданным значениям (способ связок). Общую модель создают также путём построения частных моделей по отдельным стереоскопич. парам снимков и соединения их по связующим точкам (способы независимых и частично зависимых моделей). При аналитич. решении задач пространственной Ф. измеряют координаты точек снимков на монокомпараторе или стереокомпараторе и вычисляют координаты точек местности. Наиболее строгим и точным является способ связок, основанный на совместном уравнении фотограмметрич. и геодезич. измерений и показаний соответствующих приборов на борту съёмочного самолёта (см. Аэрофотосъёмка).

Для выполнения пространств. Ф. аналоговым способом используют фотограмметрические приборы - стереограф, стереопроектор, автограф и др., позволяющие строить независимые или частично зависимые модели.

Плановая Ф. основана на присущем снимкам с малыми углами наклона свойстве, заключающемся в том, что центральные углы с вершиной в главной точке снимка или вблизи этой точки практически равны соответствующим горизонтальным углам на местности. Плановую Ф. можно развить аналитич. способом, измерив на снимках центральные углы или координаты точек, или графическим способом при помощи восковок направлений, на к-рые перенесены углы со снимков (рис. 2).

Применяются маршрутная и блочная Ф. Наиболее эффективной является блочная Ф., к-рая строится по неск. или многим маршрутам с применением ЭЦВМ: она позволяет в большей степени разредить полевую подготовку снимков, чем маршрутная.

Лит.: Коншин М. Д., Аэрофотограмметрия, М., 1967; Лобанов А. Н., Аналитическая фотограмметрия, М., 1972; Бобир Н. Я., Лобанов А. Н.,

Федору к Г. Д., Фотограмметрия, М., 1974; Фототриангуляция с применением электронной цифровой вычислительной машины, 3 изд., М., 1975; Финаревский И. И., Уравнивание аналитической фототриангуляции, М., 1976. А. Н. Лобанов.

ФОТОТРОПИЗМ (от фото... и греч. tropos - поворот), изменение направления роста органов растений под влиянием односторонне падающего света. Различают положительный Ф., напр. изгиб стебля к источнику света, плагиотропизм, или диатропизм, пластинок листьев, становящихся под углом к падающему свету, и отрицательный Ф.- изгиб органа в сторону, противоположную источнику света (напр., верхушек некоторых корней, стеблей плюща). Один и тот же орган может быть положительно фототропичным при слабом свете, отрицательно - при сильном и совершенно не проявлять Ф. при среднем. Способность к Ф. у растений различных видов не одинакова. Она может изменяться и у растений одного вида (у молодых особей она при прочих равных условиях всегда больше, чем у более взрослых), а у одного и того же растения обнаруживается в более молодых органах. Ф. стеблей и листьев способствует равномерному расположению листьев на растении, вследствие чего они мало затеняют друг друга (см. Листовая мозаика); благодаря положительному Ф., а также отрицательному геотропизму верхушки проростков выходят на поверхность почвы даже при очень глубокой заделке семян.

Процесс Ф. слагается из ряда последовательных реакций: восприятия светового раздражения, возбуждения клеток и тканей, передачи возбуждения к клеткам и тканям ростовой зоны органа и, наконец, усиления или ослабления роста клеток и тканей этой зоны, влекущих за собой Ф. Восприятие светового возбуждения осуществляется специфич. фотоактивным комплексом, в состав к-рого входят каротиноиды и флавиновые пигменты. Проведение возбуждения по растению происходит с участием биоэлектрич. токов, а также гормонов растений - ауксинов (о механизме этих процессов см. в ст. Тропизмы).

Проявление Ф. зависит от спектрального состава падающего света. Макс. фототропич. чувствительность у растений обнаружена в спектре поглощения жёлтых и оранжевых пигментов - каро-тиноидов и флавинов; в связи с этим полагают, что световое раздражение воспринимают светочувствительные белки, содержащие эти пигменты. Каротиноидные "глазки" найдены также у нек-рых одноклеточных водорослей, обнаруживающих фототаксис, и у спорангиенос-цев грибов, способных к Ф.

Лит.: Дарвин Ч., Способность к движению у растений. Соч., т. 8, М. -Л., 1941; Тhimann К. V., Curry G. M., Phototropism,

в кн.: Simposium light and life, Bait., 1961, p. 646 - 70.

ФОТОТРОФНЫЕ БАКТЕРИИ, то же, что фотосинтезирующие бактерии.

ФОТОУПРУГОСТЬ, фотоэластический эффект, пьезооптический эффект, возникновение оптич. анизотропии в первоначально изотропных твёрдых телах (в т. ч. полимерах) под действием механич. напряжений. Открыта Т. И. Зеебеком (1813) и Д. Брюстером (1816). Ф. является следствием зависимости диэлектрической проницаемости вещества от деформации и проявляется в виде двойного лучепреломления и дихроизма, возникающих под действием механич. нагрузок. При одноосном растяжении или сжатии изотропное тело приобретает свойства оптически одноосного кристалла с оптич. осью, параллельной оси растяжения или сжатия (см. Кристаллооптика). При более сложных деформациях, напр. при двустороннем растяжении, образец становится оптически двухосным.

Ф. обусловлена деформацией электронных оболочек атомов и молекул и ориентацией оптически