БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431 цветут и не плодоносят.

Восприятие фотопериодич. условий осуществляется рядом пигментных систем (напр., фитохромом) листьев, в к-рых при изменении обмена веществ образуются фитогормоны и меняется баланс между стимуляторами и ингибиторами цветения. При передвижении продуктов фотосинтеза в верхушки стеблей и стеблевые почки создаётся возможность образования цветочных зачатков. Т. о., Ф. процесса зацветания разграничивается на листовую и стеблевую фазы. Природу процессов, лежащих в основе явлений Ф. зацветания, по-видимому, надо искать в соотношениях трофических и гормональных факторов, т. е. по взаимосвязи процессов фотосинтеза и дыхания с последующими специфич. процессами, происходящими на свету или в темноте, ведущими к биосинтезу конечных продуктов, обусловливающих репродуктивное развитие. Ф., влияя на ростовые процессы, на скорость развития, на соотношение этих процессов, влияет тем самым на морфогенез (образование клубней, луковиц, корнеплодов, на форму стеблей и листьев и т. д.), на физиологич. особенности - устойчивость к морозу и засухе, к заболеваниям, состояние покоя у растений. Регуляция процессов роста и развития с помощью Ф. используется в практике селекции и семеноводства, овощеводства и цветоводства.

Лит.: Самыгин Г. А., Фотопериодизм растений, "Тр. Ин-та физиологии растений им. К. А. Тимирязева АН СССР", 1946, т.З, в. 2; Клешнин А. Ф., Растение и свет, М., 1954; Мошков Б. С., Фотопериодизм растений, Л.- М., 1961; Разумов В. И., Среда и развитие растений, 2 изд., Л.-М., 1961; Чайлахян М. X., Факторы генеративного развития растений, М., 1964; Аксенова Н. П., Баврина Т. В., Константинова Т. Н., Цветение и его фотопериодическая регуляция, М., 1973; Шульгин И. А., Растение и солнце, Л., 1973. И. А. Шульгин.

Ф. у животных. Способность реагировать на изменение продолжительности дня и ночи в суточном цикле присуща мн. группам животных: насекомым, клещам, рыбам, птицам, млекопитающим и др. Фотопериодич. реакции животных контролируют наступление и прекращение брачного периода, плодовитость, осенние и весенние линьки, переход к зимней спячке, чередование обоеполых и партеногенетич. поколений, миграции, развитие (активное или с диапаузой) и др. сезонные приспособит. явления. Особенности фотопериодич. реакций определяются наследственностью и поддаются селекции. Физиол. и биохим. основы Ф. во многом неясны. Предполагают, что они осуществляются путём сложной цепи нервнорефлекторных и гормональных реакций. Почти несомненно, что Ф. связан с биологическими ритмами (циркад-ными). Познание механизмов Ф. позволит прогнозировать фенологию, динамику численности насекомых в природе, разводить полезных насекомых-энтомофагов, управлять развитием животных при их пром. разведении (искусств, продление дня в осенне-зимний период, стимулирующее яйцекладку у птиц, используется в птицеводстве).

Лит.: Данилевский А. С., Фотопериодизм и сезонное развитие насекомых, Л., 1961; Фотопериодизм животных и растений, Л., 1976; Wо1fsоn A., Animal pho-toperiodism, "Photophysiology", 1964, v. 2.

ФОТОПЛАН, точный фотографический план местности, изготавливаемый преимущественно для картографич. целей. Ф. монтируют по геодезич. точкам на недеформирующейся основе, используя т. н. "трансформированные снимки", т. е. приведённые к заданному масштабу и горизонтальному положению путём устранения на особом приборе искажений за наклоны оси фотоаппарата при съёмке и за неровность заснятой поверхности. Для составления Ф. с высокими измерительными и изобразительными качествами в основном используются центр. части перекрывающихся смежных снимков, полученных при аэро- или космич. фотосъёмке. В процессе изготовления Ф. крупных масштабов наряду с вырезанием и механич. монтажом отпечатков снимков (см. Фотосхема) начали применять оптический монтаж, т. е. поочерёдное оп-тич. проектирование соответствующих частей негативов снимков на фотооснову Ф. Изготовлять Ф. на горные районы значительно сложнее, чем на равнинные, из-за большой амплитуды высот местности. В связи с этим дополнительно разработан метод дифференциального трансформирования снимков с получением особого Ф., наз. ортофотопланом. Методика составления Ф. по снимкам, воспроизводящим местность с экрана сканирующих систем (см. Фотоэлектронная аэросъёмка), а также по наземным и подводным снимкам, находится ещё на стадии разработки. Ф. изготовляются строго в рамках трапеций топографич. карт и являются исходным материалом при их создании. Нередко Ф. непосредственно применяются при проектно-изыскательских работах; они необходимы и для составления фотокарт. Л.М.Гольдман

ФОТОЛОЛИМЕРНАЯ ПЕЧАТНАЯ ФОРМА, форма высокой печати, печатающие элементы к-рой получают в результате действия света на полимерную композицию (т. н. фотополимерную композицию - ФПК). Эти композиции представляют собой твёрдые или жидкие (текучие) полимерные материалы, к-рые под действием интенсивного источника света становятся нерастворимыми в обычных для них растворителях, жидкие ФПК переходят в твёрдое состояние, а твёр дые дополнительно полимеризуются.В состав ФПК, кроме полимера (полиамид, полиакрилат, эфир целлюлозы, полиуретан и т. п.), входит в небольших количествах фотоинициатор (напр., бензоин). Ф. п. ф. из твёрдых композиций впервые появились в кон. 50-х гг. 20 в. в США, а спустя неск. лет в Японии стали применяться Ф. п. ф. из жидких композиций.

Для изготовления Ф. п. ф. из твёрдых ФПК используют тонкие алюминиевые или стальные листы с нанесённым на них слоем ФПК толщиной 0,4-0,5 мм. Процесс получения Ф. п. ф. состоит из экспонирования негатива, вымывания незапо-лимеризовавшегося слоя в пробельных участках и сушки готовой формы.

Для изготовления Ф. п. ф. из жидких ФПК в спец. устройство (напр., кювета из прозрачного бесцветного стекла) помещают негатив, закрывают его прозрачной тонкой бесцветной плёнкой и заливают ФПК. После этого производят экспонирование с двух сторон, в результате чего со стороны негатива образуются заполи-меризовавшиеся (твёрдые) печатающие элементы, а с противоположной стороны - подложка формы. Затем струёй растворителя вымывают незаполимеризовавшуюся композицию с пробельных элементов и высушивают готовую форму. Ф. п. ф. (часто наз. полноформатными гибкими формами) применяются для печатания журналов и книг, в т. ч. с цветными иллюстрациями. Они просты в изготовлении, имеют небольшую массу, высокую тиражеустойчивость (до 1 млн. оттисков), позволяют широко использовать фотонабор и не требуют больших затрат времени на подготовит. операции при печатании тиража.

Лит.: Синяков Н. И., Технология изготовления фотомеханических печатных форм, 2 изд., М., 1974. Н. Н. Полянский.

ФОТОПРОВОДИМОСТЬ, фоторезистивный эффект, увеличение электропроводности полупроводника под действием электромагнитного излучения. Впервые Ф. наблюдалась в Se У. Смитом (США) в 1873. Обычно Ф. обусловлена увеличением концентрации носителей тока под действием света (концентрационная Ф.). Она возникает в результате неск. процессов: фотоны "вырывают" электроны из валентной зоны и "забрасывают" их в зону проводимости (рис. 1), при этом одновременно возрастает число электронов проводимости и дырок (собственная Ф.); электроны из заполненной зоны забрасываются на свободные примесные уровни - возрастает число дырок (дырочная примесная Ф.); электроны забрасываются с примесных уровней в зону проводимости (электронная примесная Ф.). Возможно комбинированное возбуждение Ф. "собственным" и "примесным" светом: "собственное" возбуждение в результате последующих процессов захвата носителей приводит к заполнению примесных центров и, следовательно, к появлению примесной Ф. (индуцированная примесная Ф.). Концентрационная Ф. может возникать только при возбуждении достаточно коротковолновым излучением, когда энергия фотонов превышает либо ширину запрещённой зоны (в случае собственной и индуцированной Ф.), либо расстояние между одной из зон и примесным уровнем (в случае электронной или дырочной примесной Ф.).

В той или иной степени Ф. обладают все неметаллич. твёрдые тела. Наиболее изучена и широко применяется в технике Ф. полупроводников Ge, Si, Se, CdS, CdSe, InSb, GaAs, PbS и др. Величина концентрационной Ф. пропорциональна квантовому выходу n (отношению числа образующихся носителей к общему числу поглощённых фотонов) и времени жизни неравновесных (избыточных) носителей, возбуждаемых светом (фотоносиnелей).

При освещении видимым све том n обычно меньше 1 из-за "конкурирующих" процессов, приводящих к поглощению света, но не связанных с образованием фотоносителей (возбуждение экситонов, примесных атомов, колебаний кристаллической решётки и др.). При облучении вещества ультрафиолетовым или более жёстким излучением n >1, т. к. энергия фотона достаточно велика, чтобы не только вырвать электрон из заполненной зоны, но и сообщить ему кинетич. энергию, достаточную для ударной ионизации. Время жизни носителя (т. е. время, к-рое он в среднем проводит в свободном состоянии ) определяется процессами рекомбинации. При прямой (межзонной) рекомбинации фотоэлектрон сразу переходит из зоны проводимости в валентную зону. В случае рекомбинации через примесные центры электрон снач