БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431готовлять цветные изображения.

Несеребряная фотография и научно-технические применения фотографии. Материалы и процессы на основе AgHal обладают мн. исключительно ценными особенностями, такими, как чувствительность к самым разнообразным излучениям, способность аккумулировать их действие и тем самым реагировать на предельно слабые их потоки, способность геометрически правильно передавать изображение в целом и его детали. Вместе с тем постепенно стало ясно, что в ряде новых направлений прикладной науки и техники особенности AgHal-СЧС и процессов на них принципиально ограничивают возможности использования Ф. Так, с появлением голографии резко возросшие требования к разрешающей способности СЧС (порядка нескольких тысяч мм-1) и уровню т.н. фотография, шумов оказались на пределе возможностей AgHal-СЧС вследствие неустранимо присущей им дискретной структуры; поэтому в голографии наряду с AgHal-СЧС получили распространение новые СЧС, прежде всего макроскопически бесструктурные (напылённые слои, полимерные плёнки, стеклообразные вещества и т. д.). Лишь немногим менее жёсткие требования к разрешающей способности СЧС (во всяком случае, выше 1000 мм-1) предъявляются в планарной технологии производства микроэлектронных схем, в устройствах оптической памяти ЭВМ, в микрофильмировании с большим уменьшением. Ещё одним принципиальным недостатком процессов на AgHal-СЧС является относительно большой промежуток времени между экспонированием СЧС и получением на нём видимого изображения, даже не стабилизированного: ни при каких скоростных методах проявления и исключении большинства др. операций этот промежуток не удаётся сделать меньше неск. сек. Между тем всё чаще бывает необходимо (особенно в информационных системах на основе ЭВМ, технич. телевидении, голографии, при оптической обработке изображений) считывать и обрабатывать записанные на СЧС изображения или последовательности сигналов в т. н. реальном масштабе времени, т. е. за малые доли секунды; в таких условиях любые процессы на AgHal-СЧС слишком медленны, и переход к несеребряным СЧС становится неизбежным.

Немалое значение для наметившейся тенденции заменять, где можно, AgHal-СЧС несеребряными имеет то обстоятельство, что соли Ag становятся всё более дефицитными и дорогими материалами в связи с ограниченностью мировых запасов серебра. Это побуждает, с одной стороны, во всех вновь появляющихся областях применения Ф. сразу ориентироваться на несеребряные СЧС, а с др. стороны -в традиционных областях применения AgHal-СЧС изыскивать возможности их замены. На этом пути возникают значит. трудности, т. к. по уровню чувствительности несеребряные СЧС даже близко не подошли к AgHal-СЧС, во всяком случае, негативным, и едва ли подойдут к ним в обозримые сроки. Поэтому для тех применений Ф., где нужны только высокочувствит. СЧС (профессиональная и любительская киносъёмка, аэрофотосъёмка, космическая съёмка и др.), замена AgHal-СЧС пока неосуществима.

До 1950-х гг. AgHal-СЧС были практически единственным видом промышленно выпускавшихся СЧС; масштабы применения остальных СЧС, таких, как фер-ро-, диазо- и цианотипные (на основе соответственно диазония солей и соединений трёхвалентного железа) для копировальных работ и светозадубливаемые (с соединениями шестивалентного хрома, т. н. пигментная бумага) для полиграфии, были совершенно несоизмеримы с объёмом использования AgHal-СЧС. Лишь с 1950-х гг. начались в широких масштабах разработка, применение и пром. выпуск несеребряных СЧС. Однако в те же годы стали значительно расширяться и применения Ф., так что новые СЧС с самого начала использовались почти исключительно во вновь возникших областях применения Ф., а производство AgHal-СЧС продолжало расширяться в соответствии с продолжавшимся расширением традиц. применений Ф. Лишь в одной из традиц. областей несеребряные СЧС оказались более или менее полноценными заменителями AgHal-СЧС: в массовой печати кинофильмов. Для чёрно-белых фильмов нашёл применение т. н. везикулярный процесс, в к-ром изображение создаётся светорассеивающими пузырьками газообразного азота, выделяющегося в полимерной плёнке при фотохимич. разложении введённого в неё светочувствит. диазосоединения. Хотя чувствительность везикулярных СЧС низка, их использование позволяет реально сократить расход AgHal-СЧС в кинематографии. При печати цветных фильмов стали использовать др. несеребряный процесс - гидротипию, в к-рой различия подействовавшей экспозиции передаются различиями высоты задубленного желатинового рельефа на спец. СЧС. Рельеф затем окрашивают и применяют как матрицу для печати цвето-делённого (см. Цветоделение) изображения на несветочувствит. приёмном слое (бланк-фильме).

Из новых областей применения Ф., в к-рых используют несеребряные СЧС, раньше других сформировалась как самостоят. область т. н. репрография, объединяющая "малую" полиграфию, т. е. копирование и размножение печатных, графич. и машинописных материалов (текстов, документов, чертежей и т. п.), с микрофильмированием и микрокопированием таких же материалов для архивных целей (т. е. воспроизведением их с большим уменьшением для хранения в компактной форме). Репрография прочно заняла первое место в Ф. по использованию несеребряных СЧС. Из процессов репрографии наибольшее распространение получила электрофотография, где в качестве СЧС используют слои аморфного селена или слои ZnO с полимерным связующим, а в последнее время также слои органич. полупроводника поли-N-винилкарбазола. Электрофотография применяется исключительно при копи-ровально-множительных работах, и на её долю приходится до 80% общего объёма таких работ. Наряду с ней определённое место в копировально-множительной технике занимают др. несеребряные процессы: термография, диазотипия (на СЧС, содержащих диазосоединения), упомянутый выше везикулярный процесс, в к-ром также используется светочувствительность диазосоединений, диффузионные процессы с переносом красителя. Пока масштабы архивного микрорепродуцирования были сравнительно скромными, осн. роль в микрофильмировании и микрокопировании играли высокоразрешающие AgHal-СЧС. В 70-е гг. 20 в. одновременно происходят и бурный рост микрорепродуцирования, и постепенное вытеснение из этой области AgHal-СЧС диазотипными, везикулярными и т. н. фотохромными СЧС (см. Фотохромные материалы), сдерживаемое пока низким уровнем чувствительности перечисленных несеребряных СЧС.

Др. новая область применения, основанная исключительно на несеребряных материалах и процессах, связана с использованием Ф. совместно с электроннолучевыми приборами, прежде всего в телевидении. Здесь изображение регистрируется не как целое, а как последовательность сигналов, полученных при поэлементном разложении изображения. Осн. видом материалов для записи таких сигналов являются деформируемые полимерные слои, на к-рых записывающий электронный или световой пучок создаёт или изменяет поверхностное распределение зарядов. При последующем размягчении полимера нагреванием возникшие при облучении электростатические силы деформируют его поверхность в соответствии с распределением потенциала на ней и т. о. создают рельеф. Этот рельеф, модулирующий слой по толщине, и есть запись изображения. Процессы, используемые для получения такой записи, как и форма самой записи (канавки, лунки, беспорядочные структуры типа "изморози"), весьма разнообразны (см., напр., Термопластическая запись, Фазовая релъефография). Начинают применяться двухслойные системы из деформируемого слоя и фотопроводника (см. Фотопроводимость), что позволяет сочетать запись по методу фазовой рельефографии с электрофотографич. регистрацией. Считывание записанного изображения также ведётся в поэлементной последовательности, причём толщина рельефа записи служит модулятором считывающего светового пучка по фазе, т. е. этот вид Ф. относится к фазовой Ф.

Ещё одна новая область Ф.- фотолитография, возникшая в связи с развитием микроэлектроники. Здесь используются не только несеребряные СЧС - фоторезисты, но и AgHal-СЧС высокого разрешения, с помощью к-рых изготовляют фотошаблоны (через фотошаблоны затем экспонируют фоторезисты). В последней трети 20 в. и в этой области началась постепенная замена AgHal-СЧС высокоразрешающими несеребряными СЧС: предложены СЧС на основе солей палладия, подвергаемые физич. проявлению с отложением неблагородных металлов (меди, никеля), разработаны СЧС на основе напылённых слоев гало-генидов свинца и таллия, окислов молибдена и др.

Быстрое развитие ИК-техники, в т. ч. появление разнообразных ИК-излучаю-щих лазеров, поставило вопрос о расширении границ Ф. в длинноволновую сторону. Поскольку для AgHal-СЧС это исключено, то применения Ф. в этой области базируются исключительно на несеребряных СЧС и процессах. Один из методов Ф. в ИК-области спектра - эвапорография, в к-рой в качестве СЧС используют тонкие покрытия летучих веществ на ИК-поглощающих зачернённых подложках. Практически реализованы также такие СЧС, как слои холестери-ческих жидкокристаллических (см. Жидкие кристаллы) веществ и ферромагнитные плёнки с полосовой доменной структурой (см. Магнитная тонкая плёнка). Большими возможностями, ещё не полностью реализованными, располагает полупроводниковая Ф. на основе