БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431 в процессе ускорения всё же сохраняется за счёт изменения кратности ускорения q. Частица обращается в микротроне в однородном магнитном поле, многократно проходя ускоряющий резонатор. В резонаторе она получает такой прирост энергии, что её период обращения изменяется на величину, равную или кратную периоду ускоряющего напряжения. При этом, если частица с самого начала обращалась в резонанс с ускоряющим полем, этот резонанс сохраняется, несмотря на изменение периода обращения. Напр., первый оборот частица проходит за один период ускоряющего поля ( т. е. q = 1), второй за два ( q = 2), третий - за три (q = 3) и т. д. Ясно, что частица попадает при этом в одну и ту же фазу ускоряющего поля. В микротроне действует механизм автофазировки, так что частицы, близкие к равновесной, также будут ускоряться. Микротрон - ускоритель непрерывного действия и способен давать

Рис. 8. Схема движения частиц в циклотроне и фазотроне; магнитное поле перпендикулярно плоскости чертежа. 1 - ионный источник; 2 - орбита ускоряемой частицы (спираль); 3 - ускоряющие электроды; 4 - выводное устройство (отклоняющие пластины); 5 - источник ускоряющего поля.

Табл. 2. -Крупнейшие циклические ускорители



Местонахождение



Максимальная энергия, Гэв



Диаметр установки, м



Сечение камеры, см



Тип инжектора



Энергия

инжекции, Мэв



Год запуска



Синхрофазотроны



Дубна (СССР)

10

72

35X120

Линейный ускоритель

9,4

1957



Аргонн (США)

12,7

55

15X82

то же

50

1963



Женева (Швейцария)

28

200

7X15

" "

50

1959



Брукхейвен (США)

33

257

8X17

Бустер Линейный ускоритель " "

(строится бустер)

800 200

1972 1960



Серпухов (СССР)

76

472

12X20

100

1967



Батейвия (США)

500 (на 1976)

2000

5X13

Бустер

8000

1972



Синхротроны



Дарсбери (Великобритания)

5,2

70

(4 - 6)Х Х(11 - 15)

Линейный ускоритель

43

1966



Ереван (СССР)

6,1

69

3X10

то же

50

1967



Гамбург (ФРГ)

7,5

101

(4- 7)Х X (10-12)

" "

300-500

1964



Корнелл (США)

12,2

250

2,5X5,5

" "

150

1967



Фазотроны



Женева (Швейцария)

0,60

5,0

_

_

_

1957



Дубна (СССР)

0,68

6,0

-

-

-

1953



Ленинград (СССР)

1,00

6,85

-

-

-

1968




токи порядка 100 ма, максимальная достигнутая энергия порядка 30 Мэв (СССР, Великобритания). Реализация больших энергий затруднительна из-за повышенных требований к точности магнитного поля, а существ. повышение тока ограничено электромагнитным излучением ускоряемых электронов.

Для длит. сохранения резонанса магнитное поле микротрона должно быть однородным. Такое поле не обладает фокусирующими свойствами по вертикали; соответствующая фокусировка производится электрич. полем резонатора. Предлагались варианты микротронов с меняющимся по азимуту магнитным полем (секторный микротрон), но сколько-нибудь значительного развития они пока не получили.

Бетатрон - единственный циклич. ускоритель (электронов) нерезонансного типа. Ускорение электронов в бетатроне производится вихревым электрич. полем индукции, создаваемым переменным магнитным потоком, проходящим через сердечник (центр. часть) магнита. Кольцевая вакуумная камера расположена в магнитном зазоре, где с помощью полюсных наконечников сформировано спадающее магнитное поле, обеспечивающее обращение частиц по окружности и фокусировку частиц около ср. равновесного радиуса (см. рис. 9). Для того чтобы радиус орбиты оставался постоянным, между скоростью прироста энергии, определяемой изменением поля в центр. части, и скоростью увеличения заворачивающего магнитного поля должно существовать определённое соотноше ние (бетатронное условие). Оно сводится к условию:

Ворб =1/2* Вср (9)

и означает, что поле на орбите (Ворб) должно быть в 2 раза меньше ср. поля (Вср) внутри орбиты. При выполнении этого условия и условия фокусировки (4) будет происходить устойчивое ускорение частиц на орбите постоянного радиуса. Бетатрон - ускоритель импульсного действия и может служить источником электронов до энергий порядка 100- 300 Мэв. Однако для энергий выше 100- 200 Мэв более удобен синхротрон, не имеющий громоздкого центр. сердечника. Особенно распространены бетатроны на ср. энергии - 20-50 Мэв, используемые для различных целей и выпускаемые серийно. Как уже отмечалось, бе-татронным режимом ускорения часто пользуются в синхротронах для предварит. ускорения. Т. к. это ускорение про изводится до небольшой энергии, необходимый для бетатронного ускорения сердечник невелик и существенно не усложняет конструкции синхротрона.

Б. линейные ускорители

Линейный электростатический ускоритель - см. Ускоритель высоковольтный.

Линейный индукционный ускоритель. В этом У. з. ч. для ускорения используется эдс индукции, возникающая при изменении кольцеобразного магнитного поля. Вдоль оси ускорителя устанавливаются ферромагнитные кольца, охватываемые токовыми обмотками. При резком изменении тока в обмотках происходит быстрое изменение магнитного поля, к-рое согласно закону электромагнитной индукции создаёт на оси ускорителя электрич. поле Е. Заряженная частица, пролетающая за время существования этого поля вдоль оси, приобретает энергию eEL, где L - пройденное расстояние. Чтобы ускоряющее поле было достаточно велико, нужно быстро изменять магнитное поле, поэтому время существования ускоряющего поля и, следовательно, длительность импульса ускорения невелики (порядка 10-9-10-6сек). Преимущества линейных индукц. ускорителей - большие значения тока ускоренных частиц (сотни и тысячи а), большая однородность пучка (малый разброс по энергии и малые скорости поперечного движения) и большой кпд, т. е. коэфф. преобразования затрачиваемой в ускоряющей системе энергии в энергию пучка. Существующие линейные индукц. ускорители дают электронные пучки с энергией в неск. Мэв. Они применяются преим. как источники интенсивных пучков релятивистских электронов в установках для коллективного ускорения частиц и для исследований по термоядерному синтезу, однако по своим возможностям они допускают значительно более широкое применение.

Линейные резонансные ускорители - наиболее распространённый тип линейных ускорителей, особенно на большие энергии. Линейные резонансные ускорители электронов дают энергии от десятков Мэв до ~20 Гэв, протонов - до 800 Мэв. Существ. различие между протонным и электронным линейными ускорителями обусловлено гл. обр. тем, что протоны ускоряются до нерелятивистских или слаборелятивистских скоростей, тогда как электроны - до ультрарелятивистских скоростей; протонные ускорители на энергии ~600-800 Мэв, при к-рых релятивистские эффекты становятся заметными, конструктивно сближаются с электронными (см. табл. 3).

Протонные линейные резонансные ускорители. Идея линейного резонансного ускорителя выдвинута в 1924 швед. учёным Г. Изингом и в 1928 реализована на модели Виде-роэ. Ускоритель (рис. 10) представляет собой систему пролётных трубок (полых цилиндров), присоединённых через одну к разным полюсам источника переменного напряжения. Электрич. поле не проникает внутрь трубок, а сосредоточено в зазорах между ними. Длина трубок подобрана так, что частицы, попавшие в первый зазор между трубками в момент, когда поле ускоряет частицы, будут и в последующих зазорах попадать в ускоряющую фазу поля (резонанс), т. е. их энергия будет непрерывно повышаться. Ускоритель примерно такого типа был реализован в 1931 Э. О. Лоуренсом и Д. Слоуном (США).

Успехи ВЧ радиотехники в 40-е гг. дали дальнейший толчок развитию протонных линейных резонансных ускорителей. Вместо цепей с сосредоточенными постоянными в