БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431накопеременная

Фазотрон Секторный фазотрон

Протоны



Переменное

Постоянная

Однородная

Знакопеременная

Синхротрон слабофокусирующий Синхротрон сильнофокусирующий

Электроны





Переменная

Однородная

Знакопеременная

Синхрофазотрон слабофокуси-рующий Синхрофазотрон сильнофокусирующий

Протоны



Линейные ускорители



Прямая

Нерезонансный , электростатический







Электростатический ускоритель, каскадный ускоритель






Нерезонансный , индукционный







Линейный индукционный ускоритель

Электроны



Резонансный



Постоянная




Линейный резонансный ускоритель

Протоны, электроны








ровки, обусловленным зависимостью промежутка времени между последующими ускорениями от энергии. В циклич. ускорителях с однородной фокусировкой период обращения растёт с увеличением энергии, т. к. в соотношении (1) ср. радиус орбиты растёт с возрастанием энергии быстрее, чем скорость частицы. В ускорителях со знакопеременной фокусировкой зависимость ср. радиуса орбиты от энергии значительно слабее; поэтому при малых энергиях период обращения обычно уменьшается с ростом энергии (у растёт быстрее, чем ), а при больших энергиях - увеличивается с ростом энергии ( растёт быстрее, чем v, к-рая ограничена скоростью света). При периоде, растущем с энергией, устойчива правая фаза на рис. 1: если частицаслучайно попадёт в фазу ф1<ф0, она приобретёт энергию меньше равновесной, поэтому её период обращения станет меньше равновесного, частица отстанет по фазе и, следовательно, её фаза приблизится к равновесной фазе ф0. Если же период уменьшается с ростом энергии, то фаза фо становится неустойчивой, а устойчивой будет симметричная ей фаза - ф0. Как бы то ни было, если eV0достаточно велико, всегда существуют устойчивая равновесная фаза и область близких к ней фаз (область захвата), в пределах к-рой частицы колеблются около равновесной. Прирост энергии равновесной частицы еVосоsф0 определяется условием резонанса: T=qTy, где q - целое число, наз. кратностью частоты, или кратностью ускорения. Так, для циклич. ускорителя энергия равновесной частицы

(3')

где wу = 2п/Tу - частота ускоряющего поля, так что для увеличения равновесной энергии нужно либо увеличивать магнитное поле (синхротрон), либо уменьшать частоту ускоряющего поля (фазотрон), либо изменять и то и другое (синхрофазотрон), либо, наконец, изменять кратность ускорения q (микротрон). Закон изменения магнитного поля, частоты и кратности ускорения и определяет значение фазы фо для равновесной частицы; вследствие автофазировки равновесная частица набирает именно ту энергию, к-рая определяется соотношением (3'). В соответствии с энергией изменяется радиус равновесной орбиты, определяемый формулой (2).

Для неравновесных частиц, находящихся внутри области захвата, прирост энергии происходит неравномерно, но в среднем они приобретают ту же энергию, что и равновесная частица. Эти частицы "захвачены" в режим ускорения. Частицы, сильно отличающиеся от равновесных по фазе или по энергии, вообще в среднем не будут приобретать энергии, т. к. будут попадать то в ускоряющее, то в замедляющее поле (" скользить по фазе ускоряющего напряжения").

Аналогичный механизм фазировки имеет место и в линейных резонансных ускорителях с той разницей, что там всегда время прохождения расстояний между соседними зазорами уменьшается с ростом энергии, так что устойчивая равновесная фаза всегда равна - фо.

Фокусировка частиц в ускорителях. В циклич. ускорителях фокусировка достигается главным образом спец. подбором формы магнитного поля. Если бы магнитное поле было строго однородно, то при любом отклонении скорости частицы от плоскости орбиты ускоряемая частица уходила бы с равновесной орбиты в направлении оси магнита (по вертикали г). Но если магнитное поле уменьшается с увеличением радиуса, то оно имеет ч бочкообразную" форму (это связано с тем, что в отсутствии токов магнитное поле - безвихревое), благодаря чему сила F, действующая на частицу, имеет составляющую Fг по направлению к плоскости равновесной орбиты (рис. 2).

Изменение поля по радиусу принято характеризовать показателем спада поля п = - д(lnВ)/д(lnR). Т. о., для устойчивости движения в вертикальном (аксиальном) направлении необходимо вы-

полнение условия n>0, т.е. чтобы поле убывало с увеличением радиуса. Движение в радиальном направлении определяется соотношением между силой действия на частицу магнитного поля eBv/c и центростремительной силой mv2/R, соответствующей радиусу К. На равновесной орбите обе эти величины равны. Если частица с той же скоростью случайно оказалась на большем радиусе, то для обеспечения устойчивости в радиальном направлении нужно, чтобы сила действия магнитного поля на этом радиусе eBv/c была больше, чем mv2/R, т. е. чтобы магнитное поле уменьшалось медленее, чем 1/К. Тот же вывод получается, если рассмотреть случайное отклонение частицы в сторону меньших радиусов. Т. о., условие устойчивости в радиальном направлении налагает ограничение на скорость убывания магнитного поля: показатель спада поля п должен быть меньше 1 (п < 1). Для одновременной устойчивости в радиальном и вертикальном направлениях должно выполняться условие:

0
получаются при этом равными:

где m - масса, w - угловая скорость обращения частицы, dR и dz-отклонения частицы от равновесной орбиты по радиусу и по вертикали. Под действием этих фокусирующих сил частицы совершают колебания (т. н. бетатронные колебания) вокруг равновесной орбиты с частотами:

Эти частоты меньше частоты обращения со, т. е. за оборот частица совершает меньше одного бетатронного колебания. Фокусирующие силы ограничены предельно допустимыми значениями п. Такая фокусировка наз. однородной, или слабой.

Для того чтобы увеличить фокусирующую силу по вертикали, надо применить сильно спадающее поле (n>>1). Напротив, для получения большой фокусирующей силы по радиусу надо применить поле с большими отрицат. значениями п (т. е. сильно возрастающее по радиусу). Эти требования одновременно несовместимы. Однако оказывается, что при определённых ограничениях их можно реализовать поочерёдно, обеспечив тем самым сильную фокусировку и по радиусу, и по вертикали. На этом основан принцип знакопеременной фокусировки (рис. 3). Вся длина равновесной орбиты разбивается на большое число одинаковых периодов, в к-рых устанавливаются магниты, сильно фокусирующие попеременно то по радиусу, то по вертикали. При определённом соотношении между значениями показателя спада магнитного поля, длиной магнитов и числом периодов такая система обладает сильным фокусирующим действием по обоим поперечным направлениям. Физически это объясняется тем, что в фокусирующих магнитах частица оказывается дальше от равновесного положения, чем в дефокусирую-щих (т. к. предшествующий дефокуси-рующий магнит отклонил её от орбиты), поэтому действие фокусирующих магнитов сильнее действия дефокусирующих. Частота колебаний частиц при такой фокусировке получается существенно выше частоты обращения, так что за один оборот частица совершает неск. колебаний. Увеличение фокусирующей силы приводит к уменьшению амплитуды колебаний частиц под действием различных раскачивающих факторов, что позволяет уменьшить поперечные размеры вакуумной камеры и магнитов, а следовательно, существенно уменьшить вес и стоимость установки. Поэтому во всех крупных циклических ускорителях на большие энергии применяется знакопеременная (сильная) фокусировка. Неприятная особенность сильной фокусировки - наличие многочисленных резонансов, обусловленных большой частотой колебаний частиц: если число колебаний частицы по вертикали или по радиусу за один полный оборот частицы или их сумма или разность оказываются целыми или полуцелыми числами, то происходит резонансная раскачка колебаний. В связи с этим необходимо предъявлять большие требования к точности изготовления магнитов.

Знакопеременная фокусировка магнитным полем применяется и в линейных ускорителях с той разницей, что на равновесной орбите (прямая) магнитное поле равно нулю. Система фокусировки представляет собой в этом случае набор магнитов (магнитных квадрупольных линз), создающих магнитное поле, равное нулю на оси О системы и линейно нарастающее при отклонении от оси (рис. 4). В одной плоскости магниты фокусируют частицы (сила F направлена к оси), в дру гой - дефокусируют (F направлена от оси). Эти плоскости фокусировки чередуются от магнита к магниту, что и приводит к знакопеременной фокусировке. При малых энергиях частиц наряду с маг