БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431 (САР), - устранение или ослабление влияния У. в. на все управляемые (регулируемые) величины, за исключением одной (см. Автономность).

УПРАВЛЯЮЩЕЕ УСТРОЙСТВО ЦВМ, устройство управления, часть вычислительной машины, координирующая работу всех её устройств, предписывая им те или иные действия в соответствии с заданной программой. У. у. вырабатывает управляющие сигналы, обеспечивающие требуемую последовательность выполнения операций, контролирует работу машины в различных режимах, обеспечивает взаимодействие человека-оператора с ЦВМ. Структура У. у. определяется типом ЦВМ и применяемым способом управления вычислит. процессом. При синхронном управлении ЦВМ на выполнение любой из операций отводится заранее определённое время; в таких ЦВМ, как правило, используется одно У. у., наз. центральным, к-рое синхронизирует работу машины в целом. При асинхронном способе управления начало выполнения очередной операции определяется завершением предыдущей операции. В асинхронных ЦВМ каждое устройство машины (арифметическое, запоминающее и др.) часто имеет своё местное У. у. В этом случае центральное У. у. вырабатывает только осн. сигналы управления, задающие режим работы для местных У. у., к-рые в соответствии с этими сигналами организуют функционирование своих устройств.

Различают У. у. с жёстко заданной и с произвольной программами управления. В первом случае все возможные сочетания управляющих сигналов и временные соотношения между ними неизменны и определяются структурой и конструкцией ЦВМ. Изменение порядка вычислений требует схемных преобразований в У. у. Поэтому жёстко заданная программа используется чаще всего в специализированных вычислительных машинах.

У. у. с произвольной программой универсально и позволяет формировать программу решения задачи непосредственно перед её реализацией. Произвольная программа управления используется в универсальных цифровых машинах. Наиболее эффективны У. у. с мультипрограммным управлением, допускающим одноврем. решение неск. задач и независимую связь ЦВМ со мн. потребителями. Мультипрограммирование обеспечивается либо неск. У. у., каждое из к-рых обслуживает одну из программ, выполняемых ЦВМ, либо временным разделением выполнения неск. программ, осуществляемым одним У. у., к-рое переключается с одной программы на другую в результате последоват. опроса пользователей (абонентов) или вследствие принудит. прерывания со стороны абонента в соответствии с заданным приоритетом. Получили также распространение микропрограммные У. у., в к-рых каждой машинной операции соответствует набор сигналов, составляющих микрокоманду; микрокоманды хранятся в постоянной памяти ЦВМ (см. Микропрограммное управление). При этом для всех операций выбираются оптимальные наборы управляющих сигналов и в соответствии с ними строятся рабочие микропрограммы.

Тенденции развития У. у. связаны с повышением их производительности и расширением логич. возможностей, позволяющих, напр., произвольно (или с нек-рыми ограничениями) задавать структуру команд, длину слова и т. д. Допускается изменение структуры машины, совместная работа неск. ЦВМ и т. д.

Лит.: Каган Б. М., Каневский М. М., Цифровые вычислительные машины и системы, 2 изд., М., 1973.

И. А. Данильченко.

УПРОЧНЕНИЕ в технологии металлов, повышение сопротивляемости материала заготовки или изделия разрушению или остаточной деформации.

У. характеризуется степенью У.- показателем относительного повышения значения заданного параметра сопротивляемости материала разрушению или остаточной деформации по сравнению с его исходным значением в результате упрочняющей обработки, а также (в ряде случаев) глубиной У. (толщиной упрочнённого слоя). У. обычно сопровождается снижением пластичности. Поэтому практически выбор способа и оптимального режима упрочняющей обработки определяется макс. повышением прочности материала при допустимом снижении пластичности, что обеспечивает наибольшую конструкционную прочность.

У. материала в процессе его получения может быть вызвано термин., радиац. воздействиями, легированием и введением в металлич. или неметаллич. матрицу (основу) упрочнителей - волокон, дисперсных частиц и др. (см. Композиционные материалы).

У. материала заготовок и изделий достигается механич., термич., химич. и др. воздействиями, а также комбинированными способами (химико-термич., термоме-ханич. и др.). Наиболее распространённый вид упрочняющей обработки - поверхностное пластическое деформирование (ППД) - простой и эффективный способ повышения несущей способности и долговечности деталей машин и частей сооружений, в особенности работающих в условиях знакопеременных нагрузок (оси, валы, зубчатые колёса, подшипники, поршни, цилиндры, сварные конструкции, инструменты и т. п.). В зависимости от конструкции, свойств материала, размеров и характера эксплуатационных нагрузок деталей применяются различные виды ППД: накатка и раскатка роликами и шариками, обкатка зубчатыми валками, алмазное выглаживание, дорнование, гидроабразивная, вибрационная, дробеструйная и др. способы обработки. Часто ППД, кроме У., значительно уменьшает шероховатость поверхности, повышает износостойкость деталей, улучшает их внеш. вид (упрочняюще-отделочная обработка). У. при термической обработке металлов обеспечивается, в частности, при закалке с последующим отпуском. Улучшению прочностных свойств значительно способствуют и определённые виды термо-механич. обработки (в т. ч. горячий и холодный наклёп). У. химико-термич. воздействием может осуществляться путём азотирования, цианирования, цементации, диффузионной металлизации (насыщением поверхности детали алюминием, хромом и др. металлами).

У. обеспечивается также применением электрофизических и электрохимических методов обработки: ультразвуковой, электроэрозионной, магнитоимпульсной, электрогидравлической, электроннолучевой, фотоннолучевой, анодно-химиче-ской, электроискровой, а также воздействием взрывной волны, лазера и др. Упрочняющая обработка может быть поверхностной (напр., пластич. деформирование с возникновением поверхностного наклёпа), объёмной (напр., изотер-мич. закалка) и комбинированной (напр., термич. обработка с последующим ППД). Объёмная и поверхностная упрочняющая обработки могут вестись последовательно неск. методами.

Лит.: Гуляев А. П., Металловедение, 4 изд., М., 1966; Прочность металлов при циклических нагрузках, М., 1967; Папшев Д. Д., Упрочнение деталей обкаткой шариками, М., 1968; Елизаветин М. А., Сатель Э. А., Технологические способы повышения долговечности машин, 2 изд., М., 1969; Кудрявцев И. В., Поверхностный наклеп для повышения прочности и долговечности деталей машин, 2 изд., М., 1969; Данилевский В. В., Технология машиностроения, 3 изд., М., 1972; Картавов С. А., Технология машиностроения, К., 1974. Д. Л. Юдин.

УПРУГАЯ ДЕФОРМАЦИЯ, деформация, к-рая исчезает при снятии нагрузки. Для этого деформация не должна превосходить нек-рого предела, наз. пределом упругости; в противном случаев теле наблюдаются остаточные деформации.

УПРУГАЯ ЛИНИЯ в сопротивлении материалов, условное название кривой, по к-рой изгибается ось балки (бруса) под действием нагрузки (под осью балки понимается линия, соединяющая центры тяжести её поперечных сечений). Зная уравнение У. л. и используя дифференциальные зависимости теории изгиба, можно для любого сечения балки определить не только величину прогиба, но и угол поворота, изгибающий момент и поперечную силу. Уравнение У. л. находят из т. н. приближённого дифференциального уравнения оси изогнутой балки, для решения к-рого используют как аналитич., так и графоаналитич. способы. Последний особенно удобен, когда достаточно найти прогибы или углы поворота в отд. точках балки, в этом случае исключается необходимость в получении аналитич. выражения для У. л.

Лит. см. при ст. Сопротивление материалов.

УПРУГАЯ МУФТА, устройство для соединения по длине двух вращающихся частей машины (обычно валов), компенсирующее относит. смещение их осей и удары при включении. Упругий элемент У. м. может быть металлическим (напр., витая пружина) и неметаллическим (напр., резиновое кольцо). См. также Муфта,

УПРУГИЕ ВОЛНЫ, упругие возмущения, распространяющиеся в твёрдой, жидкой и газообразной средах. Напр., волны, возникающие в земной коре при землетрясениях, звуковые и ультразвуковые волны в жидкостях и газах и др. При распространении У. в. происходит перенос энергии упругой деформации в отсутствии потока вещества, к-рый имеет место только в особых случаях, напр. при акустическом ветре. Всякая гармонич. У. в. характеризуется амплитудой и частотой колебания частиц среды, длиной волны, фазовой и групповой скоростями, а также законом распределения смещений и напряжений по фронту волны. Особенность У. в. состоит в том, что их фазовая и групповая скорости не зависят от амплитуды и геометрии волны (плоская, сферич., цилиндрич. волны). В жидкостях и газах, к-рые обладают упругостью объёма, но не обладают упругостью формы, могут распространяться лишь продольные волны разрежения - сжатия, где колебания частиц среды происходят в направлении её распростране-

где К - м