БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431ется ценой (V* = V) и стратегия а* = а*(х) является оптимальной.

Лит.: Xовард Р.-А., Динамическое программирование и марковские процессы, пер. с англ., М. 1964. А. Н. Ширяев.

УПРАВЛЯЕМЫЙ ТЕРМОЯДЕРНЫЙ СИНТЕЗ, процесс слияния лёгких атомных ядер, происходящий с выделением энергии при высоких темп-рах в регулируемых, управляемых условиях. Скорости протекания термоядерных реакций малы из-за кулоновского отталкивания (см. Кулона закон) положительно заряженных ядер. Поэтому процесс синтеза идёт с заметной интенсивностью только между лёгкими ядрами, обладающими малым положит. зарядом и только при высоких темп-рах, когда кинетич. энергия сталкивающихся ядер оказывается достаточной для преодоления кулоновского потенциального барьера. В природных условиях термоядерные реакции между ядрами водорода (протонами) протекают в недрах звёзд, в частности во внутр. областях Солнца, и служат тем постоянным источником энергии, к-рый определяет их излучение. Сгорание водорода в звёздах идёт с малой скоростью, но гигантские размеры и плотности звёзд обеспечивают непрерывное испускание огромных потоков энергии в течение миллиардов лет (подробнее см. Термоядерные реакции). С несравненно большей скоростью идут реакции между тяжёлыми изотопами водорода (дейтерием 2Н и тритием 3Н) с образованием сильно связанных ядер гелия:

Именно названные реакции представляют наибольший интерес для проблемы У. т. с. В особенности привлекательна вторая реакция, сопровождающаяся большим энерговыделением и протекающая со значит. скоростью. Тритий радиоактивен (период полураспада 12,5 лет) и не встречается в природе. Следовательно, для обеспечения работы предполагаемого термоядерного реактора, использующего в качестве ядерного горючего тритий, должна быть предусмотрена ввзмож-ность воспроизводства трития. С этой целью рабочая зона рассматриваемой системы может быть окружена слоем лёгкого изотопа лития, в к-ром будет идти процесс воспроизводства

6Li + n->3H + 4Не.

Вероятность (эффективное поперечное сечение) термоядерных реакций быстро возрастает с темп-рой, но даже в оптимальных условиях остаётся несравненно меньше эффективного сечения столкновений атомных. По этой причине реакции синтеза должны происходить в полностью ионизованной плазме, нагретой до высокой темп-ры, где процессы ионизации и возбуждения атомов отсутствуют и дей-тон-дейтонные или дейтон-тритонные столкновения рано или поздно завершаются ядерным синтезом.

Удельная мощность термоядерного реактора находится путём умножения числа ядерных реакций, происходящих ежесекундно в единице объёма рабочей зоны реактора, на энергию, выделяющуюся при каждом акте реакции.

Критерий Лоусона. Применение законов сохранения энергии и числа частиц позволяет выяснить нек-рые предъявляемые к реактору синтеза общие требования, не зависящие от к.-л. особенностей технологич. или конструктивного характера рассматриваемой системы. На рис. 1 изображена принципиальная схема работы реактора. Установка произвольной конструкции содержит чистую водородную плазму с плотностью п при темп-ре Т. В реактор вводится топливо, напр. рав-нокомпонентная смесь дейтерия и трития, уже нагретая до необходимой темп-ры. Внутри реактора инжектируемые частицы время от времени сталкиваются между собой и происходит их ядерное взаимодействие. Это полезный процесс; одновременно, однако, из реактора уходит энергия за счёт электромагнитного излучения плазмы и из рабочей зоны ускользает нек-рая доля "горячих" (обладающих высокой энергией) частиц, к-рые не успели испытать ядерные взаимодействия. Пусть г - ср. время удержания частиц в реакторе; смысл величины т таков: за время в 1 сек из 1 см3 плазмы в среднем уходит n/т частиц каждого знака. В стационарном режиме в реактор надо ежесекундно инжектировать такое же число частиц (в расчёте на единицу объёма). Для покрытия энергетич. потерь подводимое топливо должно подаваться в зону реакции с энергией, превышающей энергию потока ускользающих частиц. Эта дополнит. энергия должна компенсироваться за счёт энергии синтеза, выделяющейся в зоне реакции, а также за счёт частичной рекуперации в стенках и оболочке реактора электромагнитного излучения и корпускулярных потоков. Примем для простоты, что коэфф. преобразования в электрич. энергию продуктов ядерных реакций, электромагнитного из.-лучения и частиц с тепловой энергией одинаков и равен n. Величину n часто наз. коэфф. полезного действия (кпд). В условиях стационарной работы системы и при нулевой полезной мощности уравнение баланса энергии в реакторе имеет вид:

ню*(Po + Pr+Pt) = Pr+Pt, (1)

где Р0 - мощность ядерного энерговыделения, Рr - мощность потока излучения и Pt - энергетич. мощность потока ускользающих частиц. Когда левая часть написанного равенства делается больше правой, реактор перестаёт расходовать энергию и начинает работать как термоядерная электростанция. При написании равенства (1) предполагается, что вся рекуперированная энергия без потерь возвращается в реактор через инжектор вместе с потоком подводимого нагретого топлива. Величины Ро, Рr и Pt известным образом зависят от темп-ры плазмы, и из ур-ния баланса легко вычисляется произведение

где f(T) для заданного значения кпд ню и выбранного сорта топлива есть вполне определённая функция темп-ры. На рис. 2 приведены графики f(T) для двух значений ню и для обеих ядерных реакций. Если величины пт, достигнутые в данной установке, расположатся выше кривой f(T), это будет означать, что система работает как генератор энергии. При n = 1/3 энергетически выгодная работа реактора в оптимальном режиме (минимум на кривых рис. 2) отвечает условию ("критерий Лоусона"):

реакции (d, d):nт1015 см-3*сек;

Т. о., даже в оптимальных условиях, для наиболее интересного случая - реактора, работающего на равнокомпонентной смеси дейтерия и трития, и при весьма оптимистических предположениях относительно величины ню необходимо достижение температур ~2*108К. При этом для плазмы с плотностью ~ 1014 см-3 должны быть обеспечены времена удержания порядка секунд. Конечно, энергетически выгодная работа реактора может происходить и при более низких температурах, но за это придётся "расплачиваться" увеличенными значениями т.

Итак, сооружение реактора предполагает: l) получение плазмы, нагретой до температур в сотни миллионов градусов; 2) сохранение плазменной конфигурации в течение времени, необходимого для протекания ядерных реакций. Исследования по У. т. с. ведутся в двух направлениях - по разработке квазистационарных систем, с одной стороны, и устройств, предельно быстродействующих, с другой.

У. т. с. с магнитной термоизоляцией. Рассмотрим сначала первый вариант. Энергетич. выход на уровне 105квт/м3 достигается для (d, t) реакций при плотности плазмы ~ 1015 см-3 и темп-ре ~ 108К. Это означает, что размеры реактора на 106 - 107 квт (таковы типичные мощности совр. больших электростанций) должны быть в пределах 10-100 м3, что вполне приемлемо. Основной вопрос состоит в том, каким способом удерживать горячую плазму в зоне реакции. Диффузионные потоки частиц и тепла при указанных значениях п и Т оказываются гигантскими и любые материальные стенки непригодными. Основополагающая идея, высказанная в 1950 в Советском Союзе и США, состоит в использовании принципа магнитной термоизоляции плазмы. Заряженные частицы, образующие плазму, находясь в магнитном поле, не могут свободно перемещаться перпендикулярно к силовым линиям поля. В результате коэффициенты диффузии и теплопроводности поперёк магнитного поля, в случае устойчивой плазмы, очень быстро убывают с возрастанием напряжённости поля и, напр., при полях ~ 105гс уменьшаются на 14-15 порядков величины против своего "незамагаи-ченного" значения для плазмы с указанной выше плотностью и темп-рой. Т. о., применение достаточно сильного магнитного поля в принципе открывает дорогу для проектирования реактора синтеза.

Исследования в области У. т. с. с магнитной термоизоляцией делятся на три осн. направления: 1) открытые (или зеркальные) магнитные ловушки; 2) замкнутые магнитные системы; 3) установки импульсного действия.

В открытых ловушках уход частиц из рабочей зоны поперёк силовых линий на стенки установки затруднён; он происходит либо в ходе процесса "замагниченной" диффузии (т. е. очень медленно), либо путём перезарядки на молекулах остаточного газа (см. Перезарядка ионов). Уход плазмы вдоль силовых линий также замедлен областями усиленного магнитного поля (т. н. "магнитными зеркалами" или "пробками"), размещёнными на открытых концах ловушки. Заполнение ловушек плазмой обычно производится путём инжекции плазменных сгустков или отдельных частиц, обладающих большой энергией. Дополнительный нагрев плазмы может быть осуществлён с помощью адиабатического сжатия в нарастающем магнитном поле (подробнее см. Магнитные ловушки).

В системах замкнутого типа (токамак, стелларатор) уход частиц на стенки тороидальной установки поперёк продольного магнитного поля также затруднён и происходит за счёт замагниченной диффузии и перезарядки. Нагревание плазменного шнура в токамаке на начальных стадиях процесса осуществляется протекающим по