БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431электрические, а последние - в световые, оказывается возможным при помощи У. видеть те или иные предметы в непрозрачной для света среде. На частотах УЗВЧ диапазона создан ультразвуковой микроскоп - прибор, аналогичный обычному микроскопу, преимущество к-рого перед оптическим состоит в том, что при биологич. исследованиях не требуется предварит. окрашивания предмета (рис. 5). Развитие голографии привело к определённым успехам в области ультразвуковой голографии.

Весьма важную роль У. играет в гидроакустике, поскольку упругие волны являются единственным видом волн, хорошо распространяющимся в морской воде. На принципе отражения ультразвуковых импульсов от препятствий, возникающих на пути их распространения, строится работа таких приборов, как эхолот, гидролокатор.

У. большой интенсивности (гл. обр. диапазон УНЧ) оказывает воздействие на протекание тех или иных технологич. процессов (см. Ультразвуковая обработка) посредством нелинейных эффектов - кавитации, акустич. потоков и др. Так, при помощи мощного У. ускоряется ряд процессов тепло- и мас-сообмена в металлургии. Воздействие ультразвуковых колебаний непосредственно на расплавы позволяет получить более мелкокристаллич. и однородную структуру металла. Ультразвуковая кавитация широко используется для очистки от загрязнений как мелких (часовое произ-во, приборостроение, электронная техника), так и крупных производств. деталей (трансформаторное железо, прокат и др.). С помощью У. удаётся осуществить пайку алюминиевых изделий. В микроэлектронике и полупроводниковой технике используется ультразвуковая приварка тонких проводников к на-пылённым металлич. плёнкам и непосредственно к полупроводникам. С помощью ультразвуковой сварки соединяют пластмассовые детали, полимерные плёнки, синтетич. ткани и др. Во всех этих случаях ту или иную роль играет процесс ультразвуковой очистки, локальное нагревание под действием У., ускорение процессов диффузии, изменение состояния полимера. У. позволяет обрабатывать хрупкие детали (напр., стекло, керамику), а также детали сложной конфигурации (рис. 6). В этих процессах осн. роль играют удары ультразвукового инструмента по частицам абразивной суспензии. В. А. Красильников.

У. в биологии - биологическое действие У. При действии У. на биол. объекты в облучаемых органах и тканях на расстояниях, равных половине длины волны, могут возникать разности давлений от единиц до десятков атмосфер. Столь интенсивные воздействия приводят к разнообразным биол. эффектам, физич. природа к-рых определяется совместным действием механич., тепловых и физико-химич. явлений, сопутствующих распространению У. в среде. Биол. действие У., т. е. изменения, вызываемые в жизнедеятельности и структурах биол. объектов при воздействии на них У., определяется гл. обр. интенсивностью У. и длительностью облучения и может оказывать как положит., так и отрицат. влияние на жизнедеятельность организмов. Так, возникающие при сравнительно небольших интенсивностях У. (до 1-2 вт/см2) механич. колебания частиц производят своеобразный микромассаж тканей, способствующий лучшему обмену веществ и лучшему снабжению тканей кровью и лимфой. Повышение интенсивности У. может привести к возникновению в биол. средах акустич. кавитации, сопровождающейся механич. разрушением клеток и тканей (кавитационны-ми зародышами служат имеющиеся в биол. средах газовые пузырьки).

При поглощении У. в биол. объектах происходит преобразование акустич. энергии в тепловую. Локальный нагрев тканей на доли и единицы градусов, как правило, способствует жизнедеятельности биол. объектов, повышая интенсивность процессов обмена веществ. Однако более интенсивные и длит. воздействия могут привести к перегреву биол. структур и их разрушению (денатурация белков и др.).

В основе биол. действия У. могут лежать также вторичные физико-химич. эффекты. Так, при образовании акустич. потоков может происходить перемешивание внутриклеточных структур. Кавитация приводит к разрыву молекулярных связей в биополимерах и др. жизненно важных соединениях и к развитию окис-лительно-восстановит. реакций. У. повышает проницаемость биологических мембран, вследствие чего происходит ускорение процессов обмена веществ из-за диффузии. Все перечисленные факторы в реальных условиях действуют на биол. объекты в том или ином сочетании совместно, и поэтому трудно, а подчас невозможно раздельно исследовать процессы, имеющие различную физич. природу. Л. Р. Гаврилов.

У. в м е д и ц и н е. У. используется для диагностики, терапевтич. и хирур-гич. лечения в различных областях кли-нич. медицины. Способность У. без существенного поглощения проникать в мягкие ткани организма и отражаться от акустич. неоднородностей используется для исследования внутр. органов. Ультразвуковые методы диагностики в ряде случаев позволяют более тонко различать структуру тканей, чем рентгеновские. Так, с помощью У. обнаруживаются опухоли мягких тканей, часто не различимые др. способами. У. применяют в акушерстве для диагностич. исследования плода (рис. 7) и беременной женщины, в нейрохирургии - для распознавания опухолей в головном мозге (эхоэнце-фалография), в кардиологии - для изучения гемодинамики, выявления гипертрофии мышцы сердца. Микромассаж тканей, активация процессов обмена и локальное нагревание тканей под действием У. используются в медицине для терапевтич. целей (см. Ультразвуковая терапия).

Ультразвуковая хирургия подразделяется на две разновидности, одна из к-рых связана с разрушением тканей собственно звуковыми колебаниями, а вторая - с наложением ультразвуковых колебаний на хирургич. инструмент. В первом случае применяется фокусированный У. с частотами порядка 106- 107 гц, во втором - колебания на частотах 20-75 кгц с амплитудой 10-50 мкм. Ультразвуковые инструменты применяются для рассечения мягких и костных тканей, позволяя при этом существенно уменьшать усилие резания, кровопотери и болевые ощущения. В травматологии и ортопедии У. используют для сварки сломанных костей: при этих операциях костной стружкой, смешанной с жидкой пластмассой, заполняют пространство между костными отломками; под действием У. образуется их соединение.

У. применяется также в биол. и мед. лабораторной практике, в частности - для диспергирования биол. структур, для относит. тонких воздействий на структуру клеток, при стерилизации инструментов и лекарственных веществ, для изготовления аэрозолей, а также в бактериологии, иммунологии и т. д. для получе-ния ферментов и антигенов из бактерий и вирусов, изучения морфологич. особенностей и антигенной активности бактериальных клеток и др.



У. в природе. Целый ряд животных способен воспринимать и излучать частоты упругих волн значительно выше 20 кгц.
[2633-3.jpg]



Так, птицы болезненно реагируют на ультразвуковые частоты более 25 кгц, что используется, напр., для отпугивания чаек от водоёмов с питьевой водой. Мелкие насекомые при своём полёте создают ультразвуковые волны. Летучие мыши, имея совсем слабое зрение, или вовсе не имея его, ориентируются в полёте и ловят добычу методом ультразвуковой локации. Они излучают своим голосовым аппаратом ультразвуковые импульсы (рис. 8) с частотой повторения несколько гц и несущей частотой 50-60 кгц. Дельфины излучают и воспринимают У. до частот 170 кгц; метод ультразвуковой локации у них развит, по-видимому, ещё совершеннее, чем у летучей мыши.

Изучением У. и его применением занимается большое количество различных институтов и лабораторий как в нашей стране, так и за рубежом. Такие лаборатории имеются в Акустич. ин-те АН СССР, Ин-те радиотехники и электроники АН СССР, на физич. ф-тах МГУ, ЛГУ и др. ун-тов СССР, в Калифорнийском, Станфордском, Браунов-ском и др. ун-тах США, в лабораториях фирмы "Белл систем" в США, в ин-тах и университетских лабораториях Англии, Японии, Франции, ФРГ, Италии и др. Осн. работы по У. печатаются в Акустич. журнале АН СССР, журнале Амер. Акустич. об-ва, европ. журналах "Ultrasonics" и "Acustica", а также во многих других физич. и технич. журналах.

Историческая справка. Первые работы по У. были сделаны ещё в 19 в. Франц. учёный Ф. Савар (1830) пытался установить верхний предел по частоте слышимости уха человека; изучением У. занимались англ. учёный Ф. Гальтон (1883), нем. физик В. Вин (1903), рус. физик П. Н. Лебедев и его ученики (1905). Существ. вклад был сделан франц. физиком П. Ланжевеном (1916), к-рый впервые использовал пьезоэлектрич. свойства кварца для излучения и приёма У. при обнаружении подводных лодок и измерениях глубин моря. Г. В. Пирс в США (1925) создал прибор для измерения с большой точностью скорости и поглощения У. в газах и жидкостях (т. н. интерферометр Пирса). Р. Вуд (США) (1927) добился рекордных для своего времени интенсив-ностей У. в жидкости, наблюдал ультразвуковой фонтан и исследовал влияние У. на живые организмы. Сов. учёный С. Я.Соколов в 1928 положил начало ультразвуковой дефектоскопии метал-лич. изделий, предложив использовать У. для обнаружения трещин, раковин и др. дефектов в твёрдых телах.

В 1932 Р. Люка и П. Бикар во Франции, П. Дебай и Ф. В. Сирс в Германии обнаружили явление дифракции све