БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431ой совр. молекулярной акустики, а основной эксперимент. метод - измерение зависимости с и особенно а от частоты и от внешних условий (темп-ры, давления и др.).

Совокупность уплотнений и разрежений, сопровождающая распространение ультразвуковой волны, представляет собой своеобразную решётку, дифракцию световых волн на к-рой можно наблюдать в оптически прозрачных телах. Малая длина ультразвуковых волн является основой для того, чтобы рассматривать их распространение в ряде случаев метода-ми геометрической акустики. Физически это приводит к лучевой картине распространения. Отсюда вытекают такие свойства У., как возможность геометрич. отражения и преломления, а также фокусировки звука (рис. 1).

Следующая важная особенность У.- возможность получения большой интенсивности даже при сравнительно небольших амплитудах колебаний, т. к. при данной амплитуде плотность потока энергии пропорциональна квадрату частоты. Ультразвуковые волны большой интенсивности сопровождаются рядом эффектов, к-рые могут быть описаны .лишь законами нелинейной акустики. Так, распространению ультразвуковых волн в газах и в жидкостях сопутствует движение среды, к-рое наз. акустическим течением (рис. 2). Скорость акустич. течения зависит от вязкости среды, интенсивности У. и его частоты; вообще говоря, она мала и составляет доли % от скорости У.

К числу важных нелинейных явлений, возникающих при распространении интенсивного У. в жидкостях, относится акустич. кавитация - рост в ультразвуковом поле пузырьков из имеющихся субмикроскопич. зародышей газа или пара в жидкостях до размеров в доли мм, к-рые начинают пульсировать с частотой У. и захлопываются в положит. фазе давления. При захлопывании пузырьков газа возникают большие локальные давления порядка тысяч атмосфер, образуются сферич. ударные волны. Возле пульсирующих пузырьков образуются акустич. микропотоки. Явления в кави-тационном поле приводят к ряду как полезных (получение эмульсий, очистка загрязнённых деталей и др.), так и вредных (эрозия излучателей У.) явлений. Частоты У., при к-рых используется ультразвуковая кавитация в технологич. целях, лежат в области УНЧ. Интенсивность, соответствующая порогу кавитации, зависит от рода жидкости, частоты звука, темп-ры и др. факторов. В воде на частоте 20 кгц она составляет ок. 0,3 вт/см2. На частотах диапазона УСЧ в ультразвуковом поле с интенсивностью от нескольких вт/см2 может возникнуть фонтани-рование жидкости (рис. 3) и распыление её с образованием весьма мелкодисперсного тумана.

Генерация ультразвука. Для генерирования ультразвуковых колебаний применяют разнообразные устройства, к-рые могут быть разбиты на 2 осн. группы - механические, в к-рых источником У. является механич. энергия потока газа или жидкости, и электромеханические, в к-рых ультразвуковая энергия получается преобразованием электрической. Механич. излучатели У.- воздушные и жидкостные свистки и сирены - отличаются сравнит. простотой устройства и эксплуатации, не требуют дорогостоящей электрич. энергии высокой частоты, кпд их составляет 10-20% . Основной недостаток всех механич. ультразвуковых излучателей - сравнительно широкий спектр излучаемых частот и нестабильность частоты и амплитуды, что не позволяет их использовать для контрольно-измерит. целей; они применяются гл. обр. в промышленной ультразвуковой технологии и частично - как средства сигнализации.

Основной метод излучения У.- преобразование тем или иным способом электрич. колебаний в колебания механические. В диапазоне УНЧ возможно применение электродинамич. и электроста-тич. излучателей. Широкое применение в этом диапазоне частот нашли излучатели У., использующие магнитострикцион-ный эффект (см. Магнитострикция) в никеле и в ряде спец. сплавов, также в ферритах. Для излучения УСЧ и УЗВЧ используется гл. обр. явление пьезоэлектричества. Осн. пьезоэлектрическими материалами для излучателей У. служат пьезокварц, ниобат лития, дигидрофосфат калия, а в диапазоне УНЧ и УСЧ-главным образом различные пьезо-керамические материалы. Магнитострикционные излучатели представляют собой сердечник стержневой или кольцевой формы с обмоткой, по к-рой протекает переменный ток, а пьезоэлектрические - пластинку (рис. 4) или стержень из пьезоэлектрич. материала с металлич. электродами, к к-рым прикладывается переменное электрич. напряжение. В диапазоне УНЧ широкое распространение получили составные пьезоизлучатели, в к-рых пьезокерамич. пластинка зажимается между металлич. блоками. Как правило, для увеличения амплитуды колебаний и излучаемой в среду мощности применяются колебания магнитострик-ционных и пьезоэлектрич. элементов на их собственной резонансной частоте.

Предельная интенсивность излучения У. определяется прочностными и нелинейными свойствами материала излучателей, а также особенностями использования излучателей. Диапазон интенсивности при генерации У. в области УСЧ чрезвычайно широк: интенсивности от 10-14-10-15вт/см2 до 0,1 вт/см2 считаются малыми. Для многих целей необходимо получить гораздо большие интенсивности, чем те, к-рые могут быть получены с поверхности излучателя.



[2633-2.jpg]

Рис. 4. Излучение (приём) продольных волн L пластинкой, колеблющейся по толщине в твёрдое тело; 1-кварцевая пластинка среза X толщиной Л/2, где X - длина волны в кварце; 2 - металлические электроды; 3 - жидкость (трансформаторное масло) для осуществления акустического контакта; 4 - генератор электрических колебаний; 5 - твёрдое тело.



В этих случаях можно воспользоваться фокусировкой У. Так, в фокусе параболоида, внутренние стенки к-рого выполнены из мозаики кварцевых пластинок или из пьезокерамики титаната бария, на частоте 0,5 мгц удаётся получать в воде интенсивности У. большие, чем 105 вт/см2. Для увеличения амплитуды колебаний твёрдых тел в диапазоне УНЧ часто пользуются стержневыми ультразвуковыми концентраторами (см. Концентратор акустический), позволяющими получать амплитуды смещения до 10-4 см. Выбор метода генерации У. зависит от области частот У., характера среды (газ, жидкость, твёрдое тело), типа упругих волн и необходимой интенсивности излучения.

Приём и обнаружение ультразвука. Вследствие обратимости пьезоэффекта он широко применяется и для приёма У. Изучение ультразвукового поля может производиться и оптич. методами: У., распространяясь в к.-л. среде, вызывает изменение её оптич. показателя преломления, благодаря чему его можно ви-зуализировать, если среда прозрачна для света. Смежная область акустики и оптики (акустооптика) получила большое развитие, в особенности после появления газовых лазеров непрерывного действия; развились исследования по дифракции света на У. и её различным применениям.

Применения ультразвука. Применения У. чрезвычайно разнообразны. У. служит мощным методом исследования различных явлений во многих областях физики. Так, напр., ультразвуковые методы применяются в физике твёрдого тела и физике полупроводников; возникла целая новая область физики - акусто-электроника, на основе достижений к-рой разрабатываются различные приборы для обработки сигнальной информации в микроэлектронике. У. играет большую роль в изучении вещества. Наряду с методами молекулярной акустики для жидкостей и газов, в области изучения твёрдых тел измерение скорости с и коэфф. поглощения а используются для определения модулей упругости и диссипатив-ных характеристик вещества. Получила развитие квантовая акустика, изучающая взаимодействие квантов упругих возмущений - фононов - с электронами, магнонами и др. квазичастицами и элементарными возбуждениями в твёрдых телах. У. широко применяется в технике, а также ультразвуковые методы всё больше проникают в биологию и медицину.

Применение У. в технике. По данным измерений с и а, во многих технич. задачах осуществляется контроль за протеканием того или иного процесса (контроль концентрации смеси газов, состава различных жидкостей и т. д.). Используя явление отражения У. на границе различных сред, конструируют ультразвуковые приборы для измерения размеров изделий (напр., ультразвуковые толщиномеры), для определения уровня жидкости в больших, недоступных для прямого измерения ёмкостях. У. сравнительно малой интенсивности (до ~0,1 вт/см2) широко используется для целей неразрушающего контроля изделий из твёрдых материалов (рельсов, крупных отливок, качеств. проката и т. д.) (см. Дефектоскопия). Быстро развивается направление дефектоскопии, получившее назв. акустич. эмиссии, к-рая состоит в том, что при приложении механич. напряжения к образцу (конструкции) твёрдого тела он "потрескивает" (подобно тому, как при изгибе "потрескивает" оловянный стержень). Это объясняется тем, что в образце возникает движение дислокаций, к-рые при определённых условиях (до конца ещё пока не выясненных) становятся источниками (так же, как и совокупность дислокаций и субмикроско-пич. трещин) акустич. импульсов со спектром, содержащим частоты У. При помощи акустич. эмиссии удаётся обнаружить образование и развитие трещины, а также определить её местонахождение в ответственных деталях различных конструкций. При помощи У. осуществляется звуковидение: преобразуя ультразвуковые колебания в