БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431рстдорфе (ФРГ), Кульме (Австрия) - 120 м, Закопане (ПНР) - 90 м, Хольменколлене (Норвегия) - 70 м, олимпийские Т. (70,90 м) сооружены в Скво-Вэлли (США), Инсбруке (Австрия), Кортина-д'Ампеццо (Италия), Гренобле (Франция), Саппоро (Япония).

Т. для прыжков на водных лыжах - пологий наклонный помост с гладкой поверхностью дл. 6,4 - 6,7 м (над водой) и шир. 3,7 - 4,3 м. Высота верх. среза стола Т. над водой 1,5 - 1,8 м. Наклонная часть стола Т. дл. 1 м уходит под воду на глуб. 0,3 м. С прав. стороны Т.- боковой щит. Т. крепится 4 якорными тросами.

Т. для прыжков в воду-подкидная упругая площадка (доска) дл. 4,8 - 5 м, шир. 0,5 м, преим. из дюралюминиевых сплавов фигурного профиля, с шероховатой поверхностью или с закреплённой на ней деревянной (кокосовой) дорожкой. Высота доски Т. от поверхности воды 1; 3; 5; 7,5; 10 м.

Т. гимнастический - пружинящая наклонно поставленная доска (с прочным основанием) для усиления отскока при гимнастич., акробатич. и тренировочных легкоатлетич. прыжках. Между доской и основанием крепится клин или пружина, перемещение к-рых изменяет упругость доски.



ТРАМПОВОЕ СУДОХОДСТВО (от англ. tramp, букв.- бродяга), нерегулярное судоходство, осуществляемое преим. по случайным направлениям, без определ. расписания движения. Т. с. перевозятся массовые и малоценные штучные грузы, не требующие срочной доставки. Большой уд. вес в Т. с. занимают перевозки попутных грузов. Отличит. особенности трамповых судов: умеренная скорость хода и возможность перевозки разнородных грузов. В Т. с. используются также специализированные типы сухогрузных, наливных и комбинированных судов. Во внеш. торговле капиталистич. стран Т. с. играет важную роль.

В Сов. Союзе и др. социалистич. странах Т. с. не имеет широкого распространения и перевозки осуществляются преим. на основе линейного судоходства (см. Морские линии).



ТРАНЕ (Thrane) Маркус (14.10.1817, Кристиания, ныне Осло,- 30.4.1890, О-Клэр, Висконсин, США), один из зачинателей норв. рабочего движения. Род. в семье торговца. По профессии журналист. Находясь во Франции и Германии, испытал влияние утопич. социализма (особенно А. Сен-Симона, В. Вейтлинга). В 1848-50 ездил по Норвегии, организуя рабочие объединения, развернувшие массовое движение (см. Транитариев движение 1848-51). Т. выступал за введение всеобщего избират. права и всеобщей воинской повинности, улучшение положения хусменов (батраков с наделом), отмену ввозных пошлин, демократизацию суда и школы. Выдвигал идеи нравств. усовершенствования в духе христ. социализма. В 1851 был арестован властями и осуждён на 4 года тюремного заключения. В 1863 эмигрировал в США, где сотрудничал в местной скандинавской рабочей печати.

Соч.: Marcus Thrane og thraniterbevegelsen, Oslo, [1949].

Лит.: Nissen B. A., Thrane, в кн.: Norsk biografisk leksikon, bd 16, Oslo, 1949; Bjorklund O., Marcus Thrane, [Oslo], 1951. А. С. Кан.



ТРАНЗИСТОР (от англ. transfer - переносить и resistor - сопротивление),

электронный прибор на основе полупроводникового кристалла, имеющий три (или более) вывода, предназначенный для генерирования и преобразования электрич. колебаний. Изобретён в 1948 У. Шокли, У. Браттейном и Дж. Бардином (Нобелевская пр., 1956). Т. составляют два осн. крупных класса: униполярные Т. и биполярные Т.

В униполярных Т. протекание тока через кристалл обусловлено носителями заряда только одного знака - электронами или дырками (см. Полупроводники). Подробно об униполярных Т. см. в ст. Полевой транзистор.

В биполярных Т. (к-рые обычно наз. просто Т.) ток через кристалл обусловлен движением носителей заряда обоих знаков. Такой Т. представляет собой (рис. 1) монокристаллич. полупроводниковую пластину, в к-рой с помощью особых технологич. приёмов созданы 3 области с разной проводимостью: дырочной (р) и электронной (n).


[2608-7.jpg]

Рис. 1. Схематическое изображение транзисторов п-р-n- типа (а) и р-п-р- типа (б) в схеме усилителя электрических колебаний н условные обозначения их на электрических схемах (в, г): Э - эмиттер; Б - база; К - коллектор; Rн - нагрузка; U - напряжение источников питания; i - ток; стрелками обозначено направление движения электронов (противоположное направлению тока).



В зависимости от порядка их чередования различают Т. р-п-р-типа и п-р-n-типа. Средняя область (её обычно делают очень тонкой) - порядка неск. мкм, наз. базой, две другие - эмиттером и коллектором. База отделена от эмиттера и коллектора электронно-дырочными переходами (р-n-переходами): эмиттерным (ЭП) и коллекторным (КП). От базы, эмиттера и коллектора сделаны металлич. выводы.

Рассмотрим физич. процессы, происходящие в Т., на примере Т. п-р-n-типа (рис. 1, а). К ЭП прикладывают напряжение Uбэ, к-рое понижает потенциальный барьер перехода и тем самым уменьшает его сопротивление электрич. току (т. е. ЭП включают в направлении пропускания электрич. тока, или в прямом направлении), а к КП - напряжение Uкб, повышающее потенциальный барьер перехода и увеличивающее его сопротивление (КП включают в направлении запирания или в обратном направлении). Под действием напряжения Uбэ через ЭП течёт ток iэ, к-рый обусловлен гл. обр. перемещением (инжекцией) электронов из эмиттера в базу. Проникая сквозь базу в область КП, электроны захватываются его полем и втягиваются в коллектор. При этом через КП течёт коллекторный ток iк. Однако не все инжектированные электроны достигают КП: часть их по пути рекомбинирует с осн. носителями в базе - дырками (число рекомбинировавших электронов тем меньше, чем меньше толщина базы и концентрация дырок в ней). Т. к. в установившемся режиме количество дырок в базе постоянно, то это означает, что часть электронов уходит из базы в цепь ЭП, образуя ток базы iб. Т. о., iэ = iк + iб. Обычно iб << iк, поэтому iк = iэ и dik = diэ. Величина а = = dik/diэ наз. коэффициентом передачи тока (иногда - коэфф. усиления по току), зависит от толщины базы и параметров полупроводникового материала базы и для большинства Т. близка к 1. Всякое изменение Uбэ вызывает изменение iэ (в соответствии с вольтамперной характеристикой р-п-перехода) и, следовательно, ik. Сопротивление КП велико, поэтому сопротивление нагрузки RH в цепи КП можно выбрать достаточно большим, и тогда Дг'к будет вызывать значит. изменение напряжения на нём. В результате на Rн можно получать электрич. сигналы, мощность к-рых будет во много раз превосходить мощность, затраченную в цепи ЭП. Подобные же физич. процессы происходят и в Т. р-n-р-типа (рис. 1, б), но в нём электроны и дырки меняются ролями, а полярности приложенных напряжений должны быть изменены на обратные. Эмиттер в Т. может выполнять функции коллектора, а коллектор - эмиттера (в симметричных Т.), для этого достаточно изменить полярность соответствующих напряжений.

В соответствии с механизмом переноса неосновных носителей через базу различают бездрейфовые Т., в базе к-рых ускоряющее электрич. поле отсутствует и заряды переносятся от эмиттера к коллектору за счёт диффузии, и дрейфовые Т., в к-рых действуют одновременно два механизма переноса зарядов в базе: их диффузия и дрейф в электрич. поле. По электрич. характеристикам и областям применения различают Т. маломощные малошумящие (используются во входных цепях радиоэлектронных усилит. устройств), импульсные (в импульсных электронных системах), мощные генераторные (в радиопередающих устройствах), ключевые (в системах автоматич. регулирования в качестве электронных ключей), фототранзисторы (в устройствах, преобразующих световые сигналы в электрические с одноврем. усилением последних) и специальные. Различают также низкочастотные Т. (в основном для работы в звуковом и ультразвуковом диапазонах частот), высокочастотные (до 300 Мгц) и сверхвысокочастотные (св. 300 Мгц).

В качестве полупроводниковых материалов для изготовления Т. используют преим. германий и кремний. В соответствии с технологией получения в кристалле зон с различными типами проводимости (см. Полупроводниковая электроника) Т. делят на сплавные, диффузионные, конверсионные, сплавно-диффузионные, мезатранзисторы, эпитаксиальные, пла-нарные (см. Планарная технология) и планарно-эпитаксиальные. По конструктивному исполнению Т. подразделяются на Т. в герметичных металлостеклянных, металлокерамич. или пластмассовых корпусах и бескорпусные (рис.2); последние имеют временную защиту кристалла от воздействия внешней среды (тонкий слой лака, смолы, легкоплавкого стекла) и герметизируются совместно с устройством, в котором их устанавливают. Наибольшее распространение получили планарные и планарно-эпитаксиальные кремниевые Т.

С изобретением Т. наступил период миниатюризации радиоэлектронной аппаратуры на базе достижений быстро развивающейся полупроводниковой электроники. По сравнению с радиоэлектронной аппаратурой первого поколения (на электронных лампах) аналогичная по назначению радиоэлектронная аппаратура второго поколения (на полупроводниковых приборах, в т. ч. на Т.) имеет в десятки и сотни раз меньшие габариты и массу, более высокую надёжность и потребляе