БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431 всасывается из желудочно-кишечного тракта. У человека суточное поступление Т. с продуктами питания и водой составляет 0,85 мг; выводится с мочой и калом (0,33 и 0,52 мг соответственно). Относительно малотоксичен.

Лит.: Глазунов С. Г., Моисеев В. H., Конструкционные титановые сплавы, М., 1974; Металлургия титана, М., 1968; ГорощенкоЯ. Г., Химия титана, [ч. 1-2]. К., 1970-72; Z wicker U., Titan und Titanlegierungen, В., 1974; В о w e п H. I. М., Trace elements in biochemistry, L.- N. Y., 1966.

ТИТАН, спутник планеты Сатурн, диаметр ок. 5 тыс. км, ср. расстояние от центра планеты 1223 тыс. км. Открыт в 1655 X. Гюйгенсом. См. Спутники планет.

ТИТАНА ГАЛОГЕНИДЫ, соединения титана с галогенами общей формулы TiXn (где X - галоген, п =2 -4). Высшие галогениды TiX4 более устойчивы и лучше изучены, чем низшие. Тетрагалогениды TiX4 образуются при взаимодействии титана с сухими галогенами: с фтором при 150 °С, хлором при 300 "С, бромом при 360 °С, иодом при 55 °С; наиболее важными из них для практич. применения являются хлориды и иодиды. Тетрахлорид титана TiCl4 - бесцветная тяжёлая жидкость с резким запахом, плотность 1,727 г/см3при 20 °С, Tп 136 °С, на воздухе дымит. Получают действием хлора на смесь ТЮ2 с углём при 700-800 °С; служит исходным продуктом для пром. произ-ва металлич. титана, а также применяется в военном деле для создания дымовых завес, что можно описать реакцией: ТiСl4+2Н2О = ТiО2+ 4НС1. Тетраиодид титана TiI4- краснобурые кристаллы с металлич. блеском, плотность 4,27-4,40г/см3, tnj, 150-156 °С, Ткип 377 °С. Используется для глубокого рафинирования загрязнённого примесями титана.

ТИТАНА ОКИСЛЫ, соединения титана с кислородом TiO, Ti2Оз, ТiO2. Кроме того, в интервале составов ТiO2.Ti2O3 известен ряд промежуточных окислов. Наиболее распространённым и важным для технич. целей Т. о. является двуокись ТiO2, встречающаяся в природе в виде минералов рутила, анатаза и брукита. В чистом виде ТiO2 представляет собой белый порошок (Tпл 1830-1850 °С). Получают технич. TiO2 из рутила, из комплексных титано-железных руд типа ильменитов сернокислотным методом; окислением TiCl4 в плазменной струе кислорода при 1500-2000 К или сжиганием TiCl4 в кислороде. Окисные руды титана используются как сырьё для произ-ва металлич. титана (см. Титан). ТiO2 широко применяется для изготовления высококачественной белой краски (титановые белила), а также в качестве пигмента и наполнителя в резиновой пром-сти, в произ-ве пластмасс, искусственного волокна, в бумажной, кожевенной, металлургич. и нек-рых др. отраслях пром-сти. С. Г. Глазунов.

ТИТАНАТЫ, соли титановых кислот; см. Титан.

ТИТАНИРОВАНИЕ, покрытие тонким слоем металлического титана какогонибудь др. материала, обычно стали, для повышения коррозионной стойкости. Т. может осуществляться путём конденсации паров титана на поверхности изделия, для чего металл расплавляют и перегревают с помощью электронного луча в глубоком вакууме. Таким способом наносят титановую плёнку не только на металлы, но и на стекло и др. материалы. Диффузионный метод Т. заключается в нанесении спец. пасты, содержащей порошкообразный титан, и последующем отжиге в вакууме или нейтральной среде. Т. можно производить и путём напыления. Т. позволяет значительно сократить расходы на изготовление крупных автоклавов и др. хим. оборудования, работающего в условиях повышенного коррозионного воздействия. К Т. можно отнести также внутр. облицовку стальных ёмкостей тонкими листами титана.

ТИТАНИТ, с ф е н, минерал из группы островных силикатов; химич. формула CaTiO[SiO4]. В качестве примеси содержит Fe2+, Fe3+, до 12% (Ce,Y)2O3 (в кейльгауите - разновидности Т.), Mn, Sn, Nb, Cr. Кристаллизуется в моноклинной системе. Образует обычно одиночные кристаллы в виде уплощенных призм, имеющих в поперечном сечении характерную клиновидную форму, а также зернистые агрегаты. Цвет жёлтый, коричневый, зелёный, иногда чёрный, красноватый. Блеск алмазный. Тв. по минералогич. шкале 5-6; плотность 3300-3600 кг!м2. Т.- широко распространённый акцессорный минерал магматич. горных пород (наиболее часто встречается в щелочных породах; иногда -в метаморфич. гнейсах и др. породах, а также в гидротермальных образованиях). При значит, скоплении - сырьё для получения Ti.

ТИТАНИЯ, спутник планеты Уран, диаметр ок. 1800 км, ср. расстояние от центра планеты ок. 439 тыс. км, открыт в 1787 В. Гершелем. Плоскость орбиты Т. почти перпендикулярна плоскости орбиты Урана. См. Спутники планет.

ТИТАНОВАЯ КЕРАМИКА, керамические материалы, обладающие свойствами сегнетоэлектриков, на основе соединений титана, гл. обр. двуокиси титана (TiO2) и титаната бария (ВаТiO3). Т. к. на основе ТiO2 характеризуется высокой диэлектрической проницаемостью (Е = = 20-170), малыми диэлектрическими потерями и широко используется в произ-ве конденсаторов электрических под назв. т и к о н д (от титан и конденсатор). Тиконды имеют отрицат. температурный коэфф. диэлектрической проницаемости ТКе, колеблющийся от -5-10-5 до - 13-10-4 1/°С. У Т. к., в состав к-рой наряду с ТiO2 входят окислы магния, алюминия и циркония, ТК6 может быть также положительным (от -8 • 10~5 до 3-10-5). Такая Т. к. обладает стабильной диэлектрич. проницаемостью в определённом интервале темп-р (20-80 °С) и наз. термоконд (от термостабильный и конденсатор). Изделия из керамич. материалов на основе ТiO2 получают прессованием, отливкой и т. д. Обжигают Т. к. при темп-рах 1250-1350 °С в слабоокислит. среде, чтобы избежать восстановления ТЮ2.

Из Т. к. на основе ВаТЮ2 изготовляют пьезоэлементы (см. Пьезоэлектрическая керамика, Пьезоэлектрические материалы). г А. И. Булавин.

ТИТАНОВЫЕ РУДЫ, природные минеральные образования, содержащие титан в таких соединениях и концентрациях, при к-рых пром. использование технически возможно и экономически целесообразно. Гл. минералы: ильменит (43,7-52,8% ТiO2), рутил, анатаз и брукит (94,2-99,0%), лейкоксен (56,3-96,4%), лопарит (38,3-41,0% ), титанит (33,7-40,8%), перовскит (38,7-58,9%), титаномагнетит.

Месторождения Т. р. делятся на магматич., экзогенные и метаморфогенные. Магматич. месторождения связаны с ультраосновными, основными и щелочными породами, содержат 7-32% ТЮ2. Встречаются вкрапленные и сплошные Т. р., имеющие пластовую или жилообразную форму. Переходы между вкрапленными и сплошными Т. р. обычно постепенные. Наряду с ильменитом в них содержатся титаномагнетит и гематит. Крупные магматич. месторождения известны в СССР, Канаде, США, Норвегии, ЮАР, Индии. Среди экзогенных месторождений Т. р. выделяются: ильменитовые и рутиловые в корах выветривания (3-30% TiO2); элювиально-делювиальные и аллювиальные россыпи ильменита (0,5-25% TiOz); прибрежно-морские (древние и современные) россыпи ильменита, лейкоксена, рутила (0,5-35% ТiO2), а также циркона, монацита и др. Прибрежно-морские россыпи - осн. пром. тип Т. р. Для них характерны пластовые и линзообразные залежи, мощность к-рых достигает неск. десятков м, а протяжённость неск. десятков км при ширине до неск. тысяч м. Крупные россыпи известны в СССР, Австралии, Индии, Бразилии, Новой Зеландии, Малайзии, Шри-Ланке, Сьерра-Леоне. Среди метаморфогенных месторождений выделяются песчаники с лейкоксеном (8-10% ТiO2); ильменит-магнетитовые в амфиболитах (12,2% ТЮ2); рутиловые в гнейсах, хлоритовых сланцах и др.

В Т. р., кроме Ti, обычно содержатся Fe, V, Zr, TR, Sc. Для обогащения Т. р. применяются гравитационная и магнитная сепарация, флотация. Общие запасы в капиталистич. и развивающихся странах ок. 660 млн. т. Произ-во титановых концентратов в 1971 в этих странах составило: 3,6 млн. т ильменитового, 0,42 млн. т рутилового. Осн. производители титановых концентратов за рубежом (в млн. т): Австралия 1,18; США 0,66; Норвегия 0,64. В Канаде произведено 0,77 млн. т титанового шлака, содержащего 70% ТiO2.

Лит.: Малышев И. И., Закономерности образования и размещения месторождений титановых руд, М., 1957; Б о р и с е нко Л. Ф.. Месторождения титана, в кн.: Рудные месторождения СССР, т. 1, М., 1974. Л. Ф. Борисенко.

ТИТАНОВЫЕ СПЛАВЫ, сплавы на основе титана. Лёгкость, высокая прочность в интервале темп-р от криогенных (-250 °С) до умеренно высоких (300-600 °С) и отличная коррозионная стойкость обеспечивают Т. с. хорошие перспективы применения в качестве конструкционных материалов во мн. областях, в частности в авиации и др. отраслях трансп. машиностроения.

Т. с. получают путём легирования титана след, элементами (числа в скобках -максимальная для пром. сплавов концентрация легирующей добавки в % по массе): А1 (8), V (16), Mo (30), Mn (8), Sn (13), Zr (10), Cr (10), Cu (3), Fe (5), W (5), Ni (32), Si (0,5); реже применяется легирование Nb (2) и Та (5). Как микродобавки применяются Pd (0,2) для повышения коррозионной стойкости и В (0,01) для измельчения зерна. Легирующие добавки имеют различную растворимость в а- и |3-Ti и изменяют темп-ру а/в-превращения. Алюминий, а также кислород и азот, предпочтительнее растворяющиеся в a-Ti, повышают эту темп-ру по мере увеличения их концентрации, что ведёт к расширению области существования a-модификации; такие элементы наз. а-стабилизаторами.