БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431енциалов и представляет собой 3-ю составляющую термоэдс, к-рая при низких темп-рах может быть в десятки и сотни раз больше рассмотренных выше. В магнетиках наблюдается дополнит, составляющая термоэдс, обусловленная эффектом увлечения электронов магнонами.

В металлах концентрация электронов проводимости велика и не зависит от темп-ры. Энергия электронов также почти не зависит от темп-ры, поэтому термоэдс металлов очень мала. Сравнительно больших значений достигает термоэдс в полуметаллах и их сплавах, где концентрация носителей значительно меньше и зависит от темп-ры, а также в нек-рых переходных металлах и их сплавах (напр., в сплавах Pd с Ag термоэдс достигает 86 мкв/°С). В последнем случае концентрация электронов велика. Однако термоэдс велика из-за того, что средняя энергия электронов проводимости сильно отличается от энергии Ферми. Иногда быстрые электроны обладают меньшей диффузионной способностью, чем медленные, и термоэдс в соответствии с этим меняет знак. Величина и знак термоэдс зависят также от формы поверхности Ферми. В металлах и сплавах со сложной Ферми поверхностью различные участки последней могут давать в термоэдс вклады противоположного знака и термоэдс может быть равна или близка к нулю. Знак термоэдс нек-рых металлов меняется на противоположный при низких темп-pax в результате увлечения электронов фононами.

В дырочных полупроводниках на холодном контакте скапливаются дырки, а на горячем - остаётся нескомпенсированный отрицат. заряд (если только аномальный механизм рассеяния или эффект увлечения не приводят к перемене знака термоэдс). В термоэлементе, состоящем из дырочного и электронного полупроводников, термоэдс складываются. В полупроводниках со смешанной проводимостью к холодному контакту диффундируют и электроны и дырки, и их заряды взаимно компенсируются. Если концентрации и подвижности электронов и дырок равны, то термоэдс равна нулю.

В условиях, когда вдоль проводника, по к-рому протекает ток, существует градиент темп-ры, причём направление тока соответствует движению электронов от горячего конца к холодному, при переходе из более горячего сечения в более холодное, электроны передают избыточную энергию окружающим атомам (выделяется теплота), а при обратном направлении тока, проходя из более холодного участка в более горячий, пополняют свою энергию за счёт окружающих атомов (теплота поглощается). Этим и объясняется (в первом приближении) явление Томсона. В первом случае электроны тормозятся, а во втором - ускоряются полем термоэдс, что изменяет значение т, а иногда и знак эффекта.

Причина возникновения явления Пельтье заключается в том, что средняя энергия электронов, участвующих в переносе тока, зависит от их энергетич. спектра (зонной структуры материала), концентрации электронов и механизма их рассеяния, и поэтому в разных проводниках различна. При переходе из одного проводника в другой электроны либо передают избыточную энергию атомам, либо пополняют недостаток энергии за их счёт (в зависимости от направления тока). В первом случае вблизи контакта выделяется, а во втором - поглощается теплота Пельтье. Рассмотрим случай, когда направление тока соответствует переходу электронов из полупроводника в металл. Если бы электроны, находящиеся на примесных уровнях полупроводника, могли бы точно так же перемещаться под действием электрического поля, как электроны проводимости, и в среднем энергия электронов равнялась бы энергии Ферми в металле, то прохождение тока через контакт не нарушало бы теплового равновесия (ОП = 0). Но в полупроводнике электроны на примесных уровнях локализованы, а энергия электронов проводимости значительно выше уровня Ферми в металле (и зависит от механизма рассеяния). Перейдя в металл, электроны проводимости отдают свою избыточную энергию; при этом и выделяется теплота Пельтье. При противоположном направлении тока из металла в полупроводник могут перейти только те электроны, энергия к-рых выше дна зоны проводимости полупроводника. Тепловое равновесие в металле при этом нарушается и восстанавливается за счёт тепловых колебаний кристаллической решётки. При этом поглощается теплота Пельтье. На контакте двух полупроводников или двух металлов также выделяется (или поглощается) теплота Пельтье вследствие того, что средняя энергия участвующих в токе электронов по обе стороны контакта различна.

Т. о., причина всех Т. я.- нарушение теплового равновесия в потоке носителей (т. е. отличие средней энергии электронов в потоке от энергии Ферми). Абс. значения всех термоэлектрич. коэфф. растут с уменьшением концентрации носителей; поэтому в полупроводниках они в десятки и сотни раз больше, чем в металлах и сплавах.

Лит.: Жузе В. П., Гусенкова Е. И., Библиография по термоэлектричеству, М.- Л., 1963; Иоффе А. Ф., Полупроводниковые термоэлементы, М.- Л., 1960; 3 а и м а н Д ж., Электроны и фононы, пер. с англ., М., 1962; П о п о в М. М., Термометрия и калориметрия, 2 изд., М., 1954; Стильбанс Л. С., Физика полупроводников, М., 1967. Л. С. Стильбанс.

ТЕРМОЭЛЕКТРИЧЕСКИЙ ГЕНЕРАТОР (ТЭГ), термоэлектрогенератор, устройство для прямого преобразования тепловой энергии в электрическую, принцип действия к-рого основан на эффекте Зеебека (см. Термоэлектрические явления). В состав ТЭГ входят: термобатареи, набранные из полупроводниковых термоэлементов, соединённых последовательно или параллельно; теплообменники горячих и холодных спаев термобатарей. ТЭГ подразделяются: по интервалу рабочих темп-р -на низко-, средне- и высокотемпературные (диапазоны темп-р 20-300, 300-600, 600-1000 °С; материалы термоэлементов - соответственно твёрдые растворы на основе халькогенидов элементов V группы, IV группы периодической системы Д. И. Менделеева и твёрдые растворы Si-Ge); по области применения -на космич., морские, наземные и т. д.; по типу источника тепла - на изотопные, солнечные (см. Солнечный термоэлектрогенератор), газовые и т. д. Кпд лучших ТЭГ составляет ~ 15%, мощность достигает неск. сотен кет.

ТЭГ обладают рядом преимуществ перед традиционными электромашинными преобразователями энергии, напр. турбогенераторами: отсутствием движущихся частей, высокой надёжностью, простотой обслуживания. ТЭГ применяются для энергоснабжения удалённых и труднодоступных потребителей электроэнергии (автоматич. маяков, навигац.

буев, метеорологич. станций, активных ретрансляторов, космич. аппаратов, станций антикоррозионной защиты газои нефтепроводов и т. п.). К недостаткам совр. ТЭГ относятся низкий кпд и относительно высокая стоимость. Лит. см. при ст. Термоэлемент. H. В. Коломоец, H. С. Лидоренко.

ТЕРМОЭЛЕКТРИЧЕСКИЙ ПИРОМЕТР, прибор для измерения температуры. Состоит из термопары в качестве чувствительного элемента, подключённых к термопаре компенсационных и соединительных проводов и электроизмерит. прибора (милливольтметра, автоматич. потенциометра и др.). Подробнее см. в ст. Термометрия.

ТЕРМОЭЛЕКТРИЧЕСКИЙ ПРИБОР измерительный, прибор для измерения силы переменного тока, реже электрич. напряжения, мощности. Представляет собой сочетание магнитоэлектрич. измерителя с одним или неск. термопреобразователями. Термопреобразователь состоит из термопары (или неск. термопар) и нагревателя, по к-рому протекает измеряемый ток (рис.). Под действием тепла, выделяемого нагревателем, между свободными концами термопары возникает термоэдс, измеряемая магнитоэлектрич. измерителем. Для расширения пределов измерения термопреобразователей (по току от 1 а и выше) используют высокочастотные измерительные трансформаторы тока.

Т. п. обеспечивают сравнительно большую точность измерений в широком диапазоне частот и независимость показаний от формы кривой тока, протекающего через нагреватель. Их осн. недостатки -зависимость показаний от темп-ры окружающей среды, значит, собств. потребление мощности, недопустимость больших перегрузок (не более чем Б 1,5 раза). Применяются преим. для измерения действующего значения силы переменного тока (от единиц мка до неск. десятков а) в диапазоне частот от неск. десятков гц до неск. сотен Мгц с погрешностью 1-5%.

Схемы термоэлектрических приборов для измерения тока: а - контактная, с одной термопарой; б, в - бесконтактные, с одной и с несколькими включёнными последовательно термопарами; г - с включением через высокочастотный трансформатор тока ТТ; 1* - измеряемый ток; гн - нагреватель; rt - термопара; ИМ -магнитоэлектрический измеритель.

Лит.: ЧервяковаВ.И., Термоэлектрические приборы, М.- Л., 1963; Электрические измерения, под ред. А. В. Фремке, 4 изд., Л., 1973; Ш к у р и н Г. П., Справочник по электро- и электронно-измерительным приборам, М., 1972.

ТЕРМОЭЛЕКТРИЧЕСКОЕ ОХЛАЖДЕНИЕ, поглощение теплоты при прохождении электрич. тока через термоэлемент. Сущность Т. о. заключается в появлении разности темп-р в спаях термоэлемента; при этом на холодном спае происходит поглощение теплоты из охлаждаемого вещества, передача её к горячему спаю и далее в окружающую среду (см. Пельтье эффект). Одновременно с генерацией холода в цепи термоэлемента выделяется теплота (см. Джоуля -Ленца закон) и передаётся к холодному спаю путём теплопроводности. Результирующей характеристико