БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431ч. резисторы - медные или платиновые) и в радиозондах (полупроводниковые резисторы); термоэлектрические применяются для измерения градиентов темп-ры; транзисторные термометры (термотранзисторы) - в агрометеорологии, для измерения темп-ры пахотного слоя почвы; биметаллич. термометры (термопреобразователи) применяются в термографах для регистрации темп-ры, радиационные термометры - в наземных, самолётных и спутниковых установках для измерения темп-ры различных участков поверхности Земли и облачных образований.

Лит.: Стернзат М. С., Метеорологические приборы и наблюдения, Л., 1968. М. С. Стернзат.

ТЕРМОМЕХАНИЧЕСКАЯ ОБРАБОТКА металлов (ТМО), совокупность операций деформации, нагрева и охлаждения (в различной последовательности), в результате к-рой формирование окончат, структуры металла, а следовательно, и его свойств происходит в условиях повышенной плотности и оптимального распределения несовершенств строения, созданных пластич. деформацией. Т. о., особенностью этого способа изменения свойств металлич. сплавов является сочетание операций обработки металлов давлением и термической обработки. Возможность применения ТМО определяется тем, что на процессы структурных превращений существ, влияние оказывают присутствующие в реальных сплавах несовершенства строения (дислокации, дефекты упаковки, вакансии). С др. стороны, в результате нек-рых структурных изменений образуются новые несовершенства, а также происходит перераспределение имеющихся несовершенств. Отсюда механизм и кинетика структурных изменений при ТМО зависят от характера и плотности несовершенств строения и, в свою очередь, влияют на их количество и распределение. Для классификации технологач. схем ТМО целесообразно выбрать в качестве классификац. признака последовательность проведения пластич. деформирования и термин, обработки (рис.).

Классификация видов термомеханической обработки; ПТМО - предварительная термомеханическая обработка ВTMO - высокотемпературная термомеханическая обработка; ВТМПО - высокотемпературная термомеханическая поверхностная обработка; ВТМнзО - высокотемпературная термомеханическая изотермическая обработка; НТМО - низкотемпературная термомеханическая обработка; НТМизО - низкотемпературная термомеханическая изотермическая обработка; ВНТМО - высоко-низкотемпературная термомеханическая обработка; НВТМО - низко-высокотемпературная термомеханическая обработка; ДМО-1 - деформация мартенсита с последующим отпуском; ДМО-2 - деформация мартенсита после ВТМО с последующим отпуском; МТО - деформация немартенситных структур на площадке текучести, в том числе многократная ММТО; МТО-1 - механике-термическая обработка деформацией при комнатной температуре со старением; МТО-2 -механико-термическая обработка деформацией при повышенных температурах со старением; НВТМУ - наследственное высокотемпературное термомеханическое упрочнение; А1 и Аз - нижняя и верхняя критические точки; МИ - температура начала мартенситного превращения. Термомеханическая обработка I и IV классов основана на явлении наследования упрочнения, сохраняющегося после соответствующей термической обработки.

Совмещение пластич. деформации с фазовыми превращениями получило впервые практич. реализацию в нач. 20 в. при осуществлении патентирования в процессе произ-ва стальной проволоки. Использование по своеобразной технологич. схеме комбинированного воздействия пластич. деформации и термич. обработки привело к получению таких высоких механич. свойств, к-рые были недостижимы при всех др. способах упрочняющей обработки. В 30-е гг. 20 в. применялась др. схема ТМО при упрочнении бериллиевой бронзы: закалка, холодная деформация, старение; такая обработка также обеспечила существ, повышение механич. свойств сплава.

Развитие ТМО и создание её осн. положений оказались возможными лишь на базе теории дислокаций, в частности тех её разделов, в к-рых устанавливается связь между несовершенствами строения и процессами структурообразования при превращениях. Исторически первой опробованной схемой термомеханич. упрочнения маш.-строит, стали (1954, США) была низкотемпературная термомеханич. обработка (НТМО). Смысл переохлаждения аустеиита в схеме НТМО заключается в том, чтобы вести деформацию ниже темп-ры его рекристаллизации. Этим НТМО отличается от разработанной несколько позднее в СССР высокотемпературной термомеханич. обработки (ВТМО), к-рая в дальнейшем получила большее распространение в связи с необходимостью повышения механич. свойств массовых сортов стали, применяемых в совр. машиностроении.

Темп-pa проведения деформации при ВТМО лежит обычно выше верхней критич. точки полиморфного превращения, поэтому неизбежны попытки проведения аналогии между ВТМО и термич. обработкой с прокатного (или ковочного) нагрева. Принципиальное различие между этими видами обработки состоит в том, что при ВТМО создаются такие условия высокотемпературной пластич. деформации и последующей закалки, при к-рых подавляется развитие рекристаллизац. процессов и создаётся особое структурное состояние, характеризующееся повышенной плотностью несовершенств и особым их распределением с образованием субструктуры полигонизации (см. Возврат металлов). Отсюда и экспериментально наблюдаемая развитая мозаичность строения стали после ВТМО, повышенная тонкая субмикроскопич. неоднородность строения и состава мартенсита, к-рая обеспечивает после ВТМО уникальное сочетание свойств, когда наряду с повышением прочности одновременно увеличиваются пластичность, вязкость и сопротивление хрупкому разрушению.

Механические свойства стали после ВТМО и НТМО



























Обработка

Образцы для испытаний

Предел прочности sв

кг с/мм2

Предел текучести

sт,

кгс/мм2

Относительное удлинение б, %

Относительное сжатие

ф %

Ударная вязкость ан, кгс • м/ см2





ВТМО + низкий отпуск

Плоские (нешлифованные)

220 - 260

190-210

7-10

20-40

4-5





НТМО + низкий отпуск

Круглые (шлифованные)

240-280

200-230

5-7

15-30

3-4





























Примечание: 1 кгс/мм1 = 10 Мн/м2.

В табл. сопоставлены свойства типичной среднеуглеродистой маш.-строит, легированной стали после ВТМО и НТМО. ТМО приводит к повышению усталостных характеристик; особенно велик прирост времени до разрушения в зоне огранич. выносливости после ВТМО. В .результате этой обработки повышается

ударная выносливость стали, снижается порог хладноломкости и практически ликвидируется опасная склонность к хрупкости при отпуске (чего не наблюдается после НТМО). Развитие технологии ВТМО привело к созданию новой схемы - ВТМизО, в которой высокотемпературная деформация сочетается с изотермическим превращением. Изделия (в частности, рессоры), обработанные по этой схеме, характеризуются повышенными служебными характеристиками. В большем или меньшем объёме применяются все схемы термомеханич. упрочнения, приведённые на рисунке. Выбор схемы проводится с учётом природы и назначения металлич. сплава и конкретного изделия. Эффективность конкретного способа термомеханич. упрочнения оценивается по комплексу механич. свойств. В инженерном смысле под повышением прочности понимают повышение сопротивления деформации и сопротивления разрушению в различных напряжённых состояниях, в т. ч. и таком, к-рое может вызвать образование хрупкой трещины и преждевременное разрушение. Поэтому наряду с традиц. испытаниями на растяжение, удар, усталость совр. высокопрочные, в т. ч. термомеханически упрочнённые, стали должны оцениваться по критериям механики разрушения, с определением энергоёмкости процесса развития трещины и др. аналогичных параметров.

Понимание физ. сущности упрочнения в результате ТМО оказалось возможным лишь после того, как стали проясняться осн. закономерности структурных изменений при горячей деформации. Старое представление о том, что горячая деформация всегда сопровождается рекристаллизацией, оказалось неверным.

При ТМО проводится немедленное и резкое охлаждение после завершения горячей деформации, и конечная структура упрочнённой стали наследует тонкое строение горячедеформированного аустенита. В зависимости от условий деформирования, определяемых величиной напряжения, темп-рой и скоростью деформации, структура аустенита по окончании горячей деформации сильно различается. Она может отвечать: а) состоянию горячего наклёпа с неупорядоченным распределением дислокаций, когда при последующей закалке прочность повышается и одновременно снижается сопротивление хрупкому разруше