БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431это невозможно, и поэтому отношение [25J-46.jpg]
у обеих машин должно быть одинаковым. В частности, оно должно быть тем же, что и в случае, когда рабочим телом является идеальный газ. Здесь это отношение легко может быть найдено, и, т. о., оказывается, что для всех обратимых циклов Карно
[25J-47.jpg]

Это выражение наз. пропорцией Карно. В результате для всех машин с обратимым циклом Карно кпд максимален и равен
[25J-48.jpg]
В случае, если цикл необратим, то кпд оказывается меньше этой величины. Необходимо подчеркнуть, что пропорция Карно и кпд цикла Карно имеют указанный вид только в том случае, если темп-pa измерена в абс. температурной шкале. Пропорция Карно положена в основу определения абс. температурной шкалы (см. Температурные шкалы). Следствием 2-го начала Т. (пропорции Карно) является существование энтропии как функции состояний. Если ввести величину S, изменение к-рой при изотермич. обратимом сообщении системе количества теплоты
[25J-49.jpg]
то полное приращение S в цикле Карно будет равно нулю; на адиабатич. участках цикла ДS = 0 (т. к. ДQ = 0), а изменения на изотермич. участках компенсируют друг друга. Полное приращение S оказывается равным нулю и при осуществлении произвольного обратимого цикла, что доказывается разбиением цикла на последовательность бесконечно тонких циклов Карно (с малыми изотермич. участками). Отсюда следует (как и в случае внутренней энергии), что энтропия S является функцией состояния системы, т. е. изменение энтропии не зависит от пути перехода. Используя понятие энтропии, Клаузиус (1876) показал, что исходная формулировка 2-го начала Т. полностью эквивалентна следующей: существует функция состояния системы, её энтропия S, приращение к-рой при обратимом сообщении системе теплоты равно лов внутренней энергии и энтальпии:
[25J-50.jpg]

Отсюда видно, что естественными независимыми параметрами состояния для функций [7 и H являются соответственно пары S, V и S, р. Если же вместо энтропии в качестве независимого параметра используется темп-pa, то для описания системы более удобны свободная энергия (Гельмголъцева энергия, или изохорно-изотермич. потенциал) F = U - TS (для переменных Т и V) и термодинамич. потенциал G = H - TS для переменных Тир (Гиббсова энергия, или изобарно-изотермич. потенциал), диффепенциалы к-рых равны
[25J-51.jpg]
Функции состояний U, H, F и G наз. потенциалами термодинамическими системы для соответствующих пар независимых переменных. Метод термодинамич. потенциалов (Дж. Гиббс, 1874-1878), основанный на совместном применении 1-го и 2-го начал Т., позволяет получить ряд важных термодинамич. соотношений между различными физ. свойствами системы. Так, использование независимости вторых смешанных производных от порядка дифференцирования приводит к связи между теплоёмкостями Ср и cv, коэфф. теплового расширения (дV/дТ)p, и изотермич. коэфф. сжатия (ду/др)r
[25J-52.jpg]
к соотношению между изотермич. и адиабатич. коэфф. сжатия (dV/dp)s = = (Cp/Cv)(дV/дp)r и т. п. Из условия, что изолированная система в равновесном состоянии обладает макс, значением энтропии, вытекает условие минимальности термодинамич. потенциалов в равновесном состоянии по отношению к произвольным малым отклонениям от равновесия при фиксированных значениях соответствующих независимых переменных. Это приводит к важным неравенствам (условиям устойчивости), в частности (dpldV)s <(др/дУ)г < 0, Ср > cv > 0 (см. Устойчивость термодинамическая). Третье начало термодинамики. Энтропия определяется согласно 2-му началу Т. дифференциальным соотношением (4), т. е. определяется с точностью до постоянного слагаемого, к-рое хотя и не зависит от темп-ры, но могло бы быть различным для разных тел в состоянии равновесия. Соответствующие неопределённые слагаемые существуют и у термодинамич. потенциалов. В. Нернст (1906) на основе своих электрохимич. исследований пришёл к выводу, что эти слагаемые должны быть универсальными: они не зависят от давления, агрегатного состояния и других характеристик вещества. Этот новый, следующий из опыта принцип обычно наз. третьим началом термодинамики или тепловой теоремой Нернста. М. Планк (1911) показал, что оно равносильно условию: энтропия всех тел в состоянии равновесия стремится к нулю по мере приближения к абсолютному нулю темп-ры, поскольку универсальную константу в энтропии можно положить равной нулю. Из 3-го начала Т. следует, в частности, что коэфф. теплового расширения, изохорный коэфф. давления (др/дТУ и удельные теплоёмкости Ср и cv обращаются в нуль при Т-"0. Необходимо отметить, что 3-е начало T. и вытекающие из него следствия

не относятся к системам, находящимся в т. н. заторможённом состоянии. Примером такой системы является смесь веществ, между к-рыми возможны хим. реакции, но они заторможены - скорость реакций при низких темп-pax очень мала. Другим примером может служить быстро замороженный раствор, к-рый при низкой темп-ре должен был бы расслоиться на фазы, но процесс расслоения при низких темп-pax практически не происходит. Такие состояния во многих отношениях подобны равновесным, однако их энтропия не обращается в нуль при Т = 0.

Применение термодинамики. Важными областями применения T. являются теория равновесия химического и теория фазового равновесия, в частности равновесия между разными агрегатными состояниями и равновесия при расслоении на фазы смесей жидкостей и газов. В этих случаях в процессе установления равновесия существенную роль играет обмен частицами вещества между разными фазами, и при формулировке условий равновесия используется понятие химического потенциала. Постоянство хим. потенциала заменяет условие постоянства давления, если жидкость или газ находятся во внешнем поле, напр, поле тяжести. Методы Т. эффективно применяются при изучении тех явлений природы, в к-рых существенную роль играют тепловые эффекты. В Т. принято выделять разделы, относящиеся к отдельным наукам и к технике (химич. Т., технич. Т. и т. д.), а также к различным объектам исследования (Т. упругих тел, Т. диэлектриков, магнетиков, сверхпроводников, плазмы, излучения, атмосферы, воды и др.).

Выяснение статистич. природы энтропии привело к построению термодинамич. теории флуктуации (А. Эйнштейн, 1910) и к развитию термодинамики неравновесных процессов.

Лит.: ЗоммерфельдА., Термодинамика и статистическая физика, М., 1955; Леонтович М. А., Введение в термодинамику, 2 изд., М.- Л., 1952; Ландау Л. Д., Л и ф ш и ц Е. М., Статистическая физика, 2 изд., М., 1964 (Теоретическая физика, т. 5); Второе начало термодинамики Сб., М.- Л., 1934; Э п штейн П. С. Курс термодинамики, пер. с англ., М.- Л. 1948; Ван-дер-Ваальс И. Д., Кон с т а м м Ф., Курс термостатики, пер. с нем. М., 1936; Кубо Р., Термодинамика, пер с англ., М., 1970; Термодинамика. Терминология. Сб., М., 1973. Г. М. Элиашберг.

ТЕРМОДИНАМИКА НЕРАВНОВЕСНЫХ ПРОЦЕССОВ, общая теория макроскопич. описания неравновесных процессов. Она наз. также неравновесной термодинамикой или термодинамикой необратимых процессов. Классич. термодинамика изучает термодинамич. (обратимые) процессы. Для неравновесных процессов она устанавливает лишь неравенства, к-рые указывают возможное направление этих процессов. Осн. задача Т. н. п.- количественное изучение неравновесных процессов, в частности определение их скоростей в зависимости от внешних условий. В Т. н. п. системы, в к-рых протекают неравновесные процессы, рассматриваются как непрерывные среды, а их параметры состояния - как полевые переменные, т. е. непрерывные функции координат и времени. Для макроскопич. описания неравновесных процессов применяют след, метод: систему представляют состоящей из элементарных объёмов,
[25J-53.jpg]

при реальных (необратимых) адиабатич. процессах энтропия возрастает, достигая макс, значения в состоянии равновесия. Термодинамические потенциалы. Определение энтропии позволяет написать след, выражения для дифференциак-рые всё же настолько велики, что содержат очень большое число молекул. Термодинамическое состояние каждого выделенного элементарного объёма характеризуется темп-рой, давлением и др. параметрами, применяемыми в термодинамике равновесных процессов, но зависящими от координат и времени. Количественное описание неравновесных процессов при таком методе заключается в составлении ур-ний баланса для элементарных объёмов на основе законов сохранения массы, импульса и энергии, а также ур-ния баланса энтропии и феноменологич. ур-ний рассматриваемых процессов. Методы Т. н. п. позволяют сформулировать для неравновесных процессов 1-е и 2-е начала термодинамики; получить из общих принципов, не рассматривая деталей механизма молекулярных взаимодействий, полную систему ур-ний переноса, т. е. ур-ния гидродинамики, теплопроводности и диффузии для простых и сложных систем (с хим. реакциями между компонентами, с учётом электромагнитных сил и т. д.).

Закон сохранения массы в Т. н. п. Для многокомпонентной системы скорость изменения массы /г-й компоненты в элементарном объёме равна потоку массы в этот объём РИС/., гдерь-плотность, a Vn-скорость компоненты. Поток в бесконечно малый элемент объёма, приходящийся на единицу объёма, есть ди