БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431аллов из частиц (атомов, молекул, ионов), образующих решётку кристаллов, и т. д. Наиболее широко используют Т. о. из простых веществ и Т. о. из свободных атомов (или противоположную ей по знаку теплоту атомизации, т. е. распада молекулы вещества на составляющие её атомы). Эти величины, как правило, приводятся для веществ в стандартных состояниях.

Определение Т. о. может быть выполнено различными способами: прямыми (калориметрич.) измерениями; по температурной зависимости константы равновесия реакции образования с помощью изобары или изохоры уравнения; вычислением из теплового эффекта реакции, в к-рой участвует данное вещество, при условии, что известны Т. о. остальных реагентов и продуктов реакции (с помощью Гесса закона); по гиббсовой энергии и энтропии всех реагентов; из изменения эдс гальванического элемента при различных темп-pax с помощью уравнения Гиббса - Гельмгольца; расчётом на основе многочисл. закономерностей для Т. о. различных веществ. Надёжные экспериментальные данные по Т. о. известны приблизительно для 5000 соединений. Имеющиеся величины Т. о. позволяют определять тепловые эффекты многих десятков тысяч реакций без проведения опытов. Совместно с др. данными термодинамики химической они служат основой для расчёта изменений гиббсовой энергии, позволяющих судить о стабильности и сравнительной устойчивости различных хим. соединений.

Для большого числа веществ Т. о. могут быть с хорошей степенью точности оценены с помощью закономерностей, связывающих Т. о. со строением веществ и установленных при анализе обширного экспериментального материала на основе классич. теории строения хим. соединений и квантовой механики молекул (см. Квантовая химия). Эти закономерности используют периодичность свойств однотипных соединений групп и периодов периодической системы элементов Д. И. Менделеева и приближённое постоянство строения и свойств отдельных структурных фрагментов молекул в гомологических рядах.

Лит.: Термические константы веществ, под ред. В. П. Глушко, М., 1965-74; К арапетьянц М. X., Карапетьянц М. Л., Основные термодинамические константы неорганических и органических веществ, М., 1968; С о x J. p., Pile her G., Thermochemistry of organic and organometallic compounds, L. -N. Y., 1970. М. TS.. Ерлыкина.

ТЕПЛОТА ПЛАВЛЕНИЯ, количество теплоты, к-рое необходимо сообщить веществу в равновесном изобарно-изотермич. процессе, чтобы перевести его из твёрдого (кристаллич.) состояния в жидкое (то же количество теплоты выделяется при кристаллизации вещества). Т. п.- частный случай теплоты фазового перехода I рода. Различают удельную Т. п. (измеряется в дж/кг, ккал/кг) и мольную Т. п. (дж/молъ). В табл. приведены значения удельной Т. п. Тпa при атмосферном давлении (760 мм рт. ст., или 101325 н/м2) и температуре плавления Тпл.


















Вещество

Тna, °C

Тпл,

ккал/кг

J

дж/кг





Водород

-259,1

13,89

58 200





Азот

-209,86

6,09

25 500





Ртуть

- 38,89

2,82

11 800





Лёд

0

79,4

333 000





Олово

231,9

14,4

60 300





Свинец

327,4

5,89

24 700





Медь

1083

48,9

205 000





Железо

1539

65

272 000




















ТЕПЛОТА СГОРАНИЯ, теплота горения, теплотворная способность, теплотворность, теплопроизводительность, калорийность, количество теплоты, выделяющееся при полном сгорании топлива; измеряется в джоулях или калориях. Т. с., отнесённая к единице массы или объёма топлива, наз. удельной Т. с.- кдж или ккал на 1 кг или м3. В Великобритании и США до внедрения метрич. системы мер удельная Т. с. измерялась в брит, тепловых единицах (Btu) на фунт (lb) (1Btu/lb = = 2,326 кдж/кг). Удельная Т. с.- важнейший показатель практич. ценности топлива. Т. с. определяют калориметрией. Если вода, содержащаяся в топливе и образующаяся при сгорании водорода топлива, присутствует в виде жидкости, то количество выделившейся теплоты характеризуется высшей Т. с. (О„). Если вода находится в виде пара, то Т. с. наз. низшей (Он). Низшая и высшая Т. с. связаны след, зависимостью:
[25J-27.jpg]

где W - количество воды в топливе, % (по массе): H - количество водорода в топливе, % (по массе); k - коэфф., равный 25 кдж/кг (6 ккал/кг). В СССР, ФРГ и др. странах тепловые расчёты обычно ведут по низшей Т. с., в США, Великобритании, Франции - по высшей.

Т. с. может быть отнесена к рабочей массе топлива Ор, т. е. к топливу в том виде, в каком оно поступает к потребителю; к сухой массе топлива 0е; к горючей массе топлива Ог, т. е. к топливу, не содержащему влаги и золы.

Для приближённых подсчётов Т. с. определяют по эмпирич. формулам; напр., Т. с. твёрдых и жидких топлив вычисляют по формуле Менделеева:
[25J-28.jpg]

где Ср, Нр, Ор, Sр, W - содержание в рабочей массе топлива углерода, водорода, кислорода, летучей серы и влаги в % (по массе).

Для сравнит, расчётов используется т. н. топливо условное, имеющее удельную Т. с., равную 29308 кдж/кг (7000 ккал/кг). . и. H. Розенгауз.

ТЕПЛОТА ФАЗОВОГО ПЕРЕХОДА, количество теплоты, к-рое необходимо сообщить веществу (или отвести от него) при равновесном изобарно-изотермич. переходе вещества из одной фазы в другую (фазовом переходе I рода - кипении, плавлении, кристаллизации, полиморфном превращении и т. п.). Для фазовых переходов II рода Т. ф. п. равна нулю. Равновесный фазовый переход при данном давлении происходит при постоянной темп-ре - температуре фазового перехода. Т. ф. п. равна произведению темп-ры фазового перехода на разность энтропии в двух фазах, между к-рыми происходит переход. Различают удельную и мольную Т. ф. п., отнесённые соответственно к 1 кг и i молю вещества.

ТЕПЛОТЕХНИКА, отрасль техники, занимающаяся получением и использованием теплоты в пром-сти, с. х-ве, на транспорте и в быту.

Получение теплоты. Осн. источником теплоты, используемой человечеством (70-е гг. 20 в.), является природное органическое топливо, выделяющее теплоту при сжигании. Различают твёрдое, жидкое и газообразное топливо. Наиболее распространённые виды твёрдого топлива - угли (каменные и бурые, антрациты), горючие сланцы, торф. Природное жидкое топливо -нефть, однако непосредственно нефть редко используется для получения теплоты. На нефтеперерабат. предприятиях из нефти вырабатывают бензин - горючее для автомоб. и поршневых авиац. двигателей; керосин - для реактивной авиации и для нек-рых поршневых двигателей; различные типы дизельного топлива и мазуты, применяемые в основном на тепловых электростанциях. Газообразное топливо - природный газ, состоящий из метана и др. углеводородов (см. Газы горючие). Топливом в сравнительно небольших масштабах служит также древесина (дрова и древесные отходы). В сер. 20 в. разрабатываются методы сжигания пром. и бытовых отходов с целью их уничтожения и одновременного получения теплоты.

Важнейшая характеристика топлива -удельная теплота сгорания. Для сравнит, расчётов используется понятие топлива условного с теплотой сгорания 29308 кдж/кг (7000 ккал/кг).

Для сжигания топлива служат различные технич. устройства - топки, печи, камеры сгорания. В топках и печах топливо сжигается при давлении, близком к атмосферному, а в качестве окислителя обычно используется воздух. В камерах сгорания давление может быть выше атмосферного, а окислителем может служить воздух с повышенным содержанием кислорода (обогащённый воздух), кислород и т. д.

Теоретически для сгорания топлива необходимо стехиометрическое количество кислорода. Напр., при горении метана СН4 осуществляется след, реакция: СН4 + 2О2 = СО2 + 2Н2О. Из этого уравнения следует, что на 1 кмоль (16 кг) СН4 требуется 2 кмоля (64 кг) О2, т. е. на 1 кг СН4 - 4 кг О2. На практике для полного сгорания нужно неск. большее количество окислителя. Отношение действит. количества окислителя (воздуха), использованного для горения, к теоретически необходимому наз. коэфф. избытка окислителя (воздуха) ос. При сгорании топлива его химич. энергия переходит во внутр. энергию продуктов сгорания, в результате чего эти продукты нагреваются. Темп-pa, к-рую приобрели бы продукты сгорания, если бы не отдавали теплоту во вне (адиабатный процесс), наз. теоретич. темп-рой горения. Эта темп-pa зависит от вида топлива и окислителя, их начальной темп-ры и от к