БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431ости и отсутствия конвекции), проявляется их хнмич. (за счёт наличия неорганич. и органич. кислот в леч. грязи, биологически активных веществ в грязи и озокерите, минеральных масел в парафине) и механич. (напр., компрессионный эффект аппликации парафина) действие.

Механизм влияния Т. сложен; он складывается из местных (очаговых) и общих реакций. Первые проявляются гл. обр. в улучшении крово- и лимфообращения и нервнотрофич. процессов (см. Трофика нервная), что обусловливает противовоспалит., обезболивающий и рассасывающий эффект. Общие реакции связаны с рефлекторно-гуморальными влияниями на нервную, сердечнососудистую, эндокринную, иммунокомпетентную и др. системы организма, обеспечивающие его саморегуляцню. Оптимальная реакция возникает в тех случаях, когда нет чрезмерной тепловой нагрузки на организм и когда вызванные Т. изменения на клеточном, субклеточном и молекулярном уровнях ещё не перекрываются последствиями процесса нагрева тканей.

Т. применяют при нек-рых заболеваниях опорно-двигат. аппарата, периферич. нервной системы, уха, горла и носа, мочеполовой системы, при травмах, спаечном процессе в брюшной полости и малом тазу и др. Т. противопоказано при злокачеств. и доброкачеств. опухолях, активных формах туберкулёза, болезнях крови, заболеваниях сердечнососудистой системы с декомпенсацией кровообращения, острых воспалит, процессах и др.

Лит.: Олефиренко В. Т., Водотеплолечение, М., 1970; Redford J. В., Physical medicine, principles of thermotherapy, "Northwest medicine", 1960, v. 59, p. 919 - 24; Fizykoterapia ogolna i kliniczna, pod red. J. Jankowiaka, 2 wyd., Warsz., 1968. В. М. Стругацкий.

В ветеринарии Т. (в виде компресса, припарки, душа, ванны, электрогрелки, светолечения, грязелечения, диатермии и др. методов) применяют при коликах, пневмонии, мастите, хирургич. болезнях (ушиб, растяжение сухожилий и связок и др.).

ТЕПЛОЛЮБИВЫЕ РАСТЕНИЯ, растения, на к-рые губительно действуют низкие положит, темп-ры (ниже 6 °С). К Т. р. относятся выходцы из тёплых и жарких стран, в т. ч. культурные растения - рис, огурец, хлопчатник и др. Степень повреждения Т. р. при воздействии низкой положит, темп-ры зависит как от условий их произрастания (влажность воздуха, освещённость и пр.), так и от видовых особенностей, возраста и физиологич. состояния растений. Повреждения растений под действием низкой положит, темп-ры обнаруживаются не сразу (нередко уже после прекращения охлаждения). Гибель растений объясняется необратимым нарушением обмена веществ.

ТЕПЛОНОСИТЕЛИ, движущаяся среда, применяемая для передачи теплоты от более нагретого тела к менее нагретому. Т. служат для охлаждения, сушки, термич. обработки и т.п. процессов в системах теплоснабжения, отопления, вентиляции, в технологич. тепловых и др. устройствах (см. Теплообменник). Наиболее распространённые Т.: топочные (дымовые) газы, вода, водяной пар, жидкие металлы (калий, натрий, ртуть), фреоны, аэровзвеси сыпучих материалов и т. д. Т. могут в процессе передачи теплоты изменять своё агрегатное состояние (кипящие жидкости, конденсирующиеся пары) или сохранять его неизменным (некипящие жидкости, перегретые пары, неконденсирующиеся газы). В первом случае темп-pa Т. остаётся неизменной, т. к. передаётся лишь теплота фазового перехода; во втором случае температура Т. изменяется (понижается или повышается). Особые требования предъявляются к Т. в ядерных реакторах. Лит.: Нечеткий А. В., Высокотемпературные теплоносители, 3 изд., М., 1971.

ТЕПЛОНОСИТЕЛЬ в ядерном реакторе, жидкое или газообразное вещество, пропускаемое через активную зону реактора и выносящее из неё тепло, выделяющееся в результате реакции деления ядер. В энергетич. реакторах Т. из реактора поступает в парогенератор, в к-ром вырабатывается пар, приводящий в действие турбины (в ряде случаев сам Т.- пароводяной или газовый - может служить рабочим телом турбинного цикла). В исследовательских (напр., материаловедческих) и спец. реакторах (напр., в реакторах для накопления радиоактивных изотопов) Т. осуществляет лишь сток тепла, выносимого из активной зоны. К Т. предъявляют след, требования: слабое поглощение нейтронов в Т. (в тепловых реакторах) либо слабое замедление их (в быстрых реакторах); химич. стойкость Т. в условиях интенсивного радиац. облучения; низкая коррозионная активность по отношению к конструкционным материалам, с к-рыми Т. находится в контакте; высокий коэфф. теплопередачи; большая удельная теплоёмкость; низкое рабочее давление при высоких темп-pax. В тепловых реакторах в качестве Т. используют воду (обычную и тяжёлую), водяной пар, органич. жидкости, двуокись углерода; в быстрых реакторах - жидкие металлы (преим. натрий), а также газы (напр., водяной пар, гелий). Часто Т. служит жидкость, являющаяся одновременно и замедлителем. Лит. см. при ст. Ядерный реактор.С. А. Скворцов.

ТЕПЛООБМЕН, самопроизвольный необратимый процесс переноса теплоты в пространстве, обусловленный неоднородным полем темп-ры. В общем случае перенос теплоты может также вызываться неоднородностью полей других физ. величин, напр, разностью концентраций (диффузионный термоэффект). Различают 3 вида Т.: теплопроводность, конвекция и лучистый теплообмен (на практике Т. обычно осуществляется всеми 3 видами сразу). Т. определяет или сопровождает мн. процессы в природе (напр., ход эволюции звёзд и планет, метеорологич. процессы на поверхности Земли и т. д.), в технике и в быту. Во мн. случаях, напр, при исследовании процессов сушки, испарит, охлаждения, диффузии, Т. рассматривается совместно с массообменом. Т. между двумя теплоносителями через разделяющую их твёрдую стенку или через поверхность раздела между ними наз. теплопередачей.

Лит. см. при статьях об отдельных видах теплообмена.

ТЕПЛООБМЕН В АТМОСФЕРЕ, обмен теплотой, происходящий в атмосфере в горизонтальном и в вертикальном направлениях. Поток тепла направлен от более нагретых областей к менее нагретым, а его интенсивность тем больше, чем больше разность темп-р. В общем в тропосфере темп-pa убывает от экватора к полюсам, а на каждой данной широте понижается с возрастанием высоты. Вследствие междуширотного теплообмена атмосфера в троппч. и субтропич. широтах (в Сев. полушарии до 40°) теряет тепло, а в более высоких широтах - получает его. Кроме того, теплообмен происходит также и в направлении широт вследствие неоднородности тепловых свойств подстилающей поверхности (напр., суши и моря). При вертикальном Т. в а. поток тепла направлен гл. обр. вверх от земной поверхности.

Перенос тепла в атмосфере осуществляется: конвекцией (включая адвекцию), т. е. горизонтальным и вертикальным переносом воздуха; лучистым теплообменом, теплообменом, обусловленным испарением воды и конденсацией водяного пара, и в незначит. степени молекулярной теплопроводностью. Горизонтальный конвективный (адвективный) теплообмен между юж. и сев. широтами осуществляется меридиональным переносом возд. масс и составляет ок. 1019 кал/сут. Конвективный теплообмен в вертикальном направлении вызывается как упорядоченными вертикальными перемещениями воздуха в областях циклонов и антициклонов, так и турбулентностью (см. Турбулентность в атмосфере и гидросфере). В среднем для Сев. полушария вертикальный поток тепла составляет ок. 50 кал/см2 -сут. Лучистый теплообмен происходит вследствие поглощения и излучения длинноволновой радиации водяным паром, пылью, углекислым газом, облаками и др. газами и аэрозолями атмосферы. В результате лучистого теплообмена в конечном счёте происходит теплоотдача из атмосферы в мировое пространство; количество отдаваемого тепла составляет в среднем 400 кал/см2 -сут. Потеря тепла в мировое пространство, в общем, уменьшается от низких широт к высоким. Теплообмен, вызванный процессами испарения и конденсации, приводит к переносу тепла с земной поверхности в атмосферу в среднем в количестве ок. 120 кал/см2 -сут. Наибольшее количество тепла этим путём переносится в низких широтах. В связи с существованием годовых и суточных изменений темп-ры и суточных колебаний скорости ветра наблюдается годовой и суточный ход интенсивности Т. Лит.: Пальмен Э., Ньютон Ч., Циркуляционные системы атмосферы, пер. с англ., Л., 1973; X р г и а н А. X., Физика атмосферы, Л., 1969; Кондратьев К. Я., Лучистый теплообмен в атмосфере, Л., 1956.

ТЕПЛООБМЕН В МОРЕ, обмен теплотой между поверхностью моря и атмосферой (внешний теплообмен) и между поверхностью и нижележащими слоями, а также между отдельными районами морей и океанов (внутренний теплообмен). Во внешний Т. в м. вносят свой вклад радиационный, турбулентный и конвективный теплообмен, процессы испарения и конденсации водяных паров над морем. Внутренний Т. в м. осуществляется турбулентным и конвективным перемешиванием и вертикальными и горизонтальными течениями. В период осенне-зимнего охлаждения поверхности моря поток теплоты направлен в основном снизу вверх, а в период весенне-летнего нагревания - сверху вниз. В горизонтальном теплообмене между отдельными районами моря гл. роль играют горизонтальные течения. См. также Океан.

ТЕПЛООБМЕН В ПОЧВЕ, процесс обмена теплом между поверхностью почвы и её глубинными слоями. Тесно связан с теп