БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431чает около 72 ккал/см2в год лучистой энергии, к-рая частично расходуется на испарение воды (кружок LE) и частично возвращается в атмосферу посредством турбулентной теплоотдачи (стрелка Р).

Данные о составляющих Т. б. используются при разработке многих проблем климатологии, гидрологии суши, океанологии; они применяются для обоснования численных моделей теории климата и для эмпирич. проверки результатов применения этих моделей. Материалы о Т. б. играют большую роль в изучении изменений климата, их применяют также в расчётах испарения с поверхности речных бассейнов, озёр, морей и океанов, в исследованиях энергетич. режима морских течений, для изучения снежных и ледяных покровов, в физиологии растений для исследования транспирации и фотосинтеза, в физиологии животных для изучения термич, режима живых организмов. Данные о Т. б. были использованы и для изучения географич. зональности в работах сов. географа А. А. Григорьева.

Лит.: Атлас теплового баланса земного шара, под ред. М. И. Будыко, М., 1963; Б у д ы к о М. И., Климат и жизнь, Л., 1971; Григорьев А. А., Закономерности строения и развития географической среды, М., 1966. М. И. Будыко.

ТЕПЛОВОЙ БАЛАНС моря, соотношение прихода и расхода теплоты в море, основными составляющими которого являются: радиационный баланс, турбулентный и конвективный теплообмен моря с атмосферой, потеря теплоты на испарение, перенос её течениями. Кроме того, в Т. б. моря входит приход и расход теплоты в результате конденсации водяного пара на поверхность моря, выпадения осадков, речного стока, образования и таяния льдов, поступления теплоты из недр Земли через поверхность дна моря, хим. процессов в море, перехода части кинетич. энергии воды и воздуха в теплоту. Подробнее см. в ст. Океан.

ТЕПЛОВОЙ ВАКУУММЕТР, см. в ст. Вакуумметрия.

ТЕПЛОВОЙ ДВИГАТЕЛЬ, двигатель, в к-ром тепловая энергия преобразуется в механич. работу. Т. д. составляют наибольшую группу среди первичных двигателей и используют природные энергетич. ресурсы в виде химического или ядерного топлива. В основе работы Т. д. лежит замкнутый (или условно замкнутый) термодинамич. цикл (см. Цикл двигателя). Эффективность работы идеального Т. д. определяется термодинамич. кпд (см. Круговой процесс). Работа реального Т. д., имеющего дополнит, потери, напр, на трение, вихреобразование, тепловые потери, оценивается т. н. эффективным кпд, т. е. отношением механич. работы на выходном валу Т. д. к подведённой тепловой энергии. Эффективный кпд Т. д. колеблется в пределах 0,1-0,6. По типу машин, осуществляющих рабочие термодинамич. процессы, Т. д. подразделяются на поршневые двигатели (см. Поршневая машина), роторные двигатели и реактивные двигатели. Возможны комбинации этих типов Т. д., напр. турбореактивный двигатель, Ванкеля двигатель. По способу подвода теплоты для нагрева рабочего тела Т. д. подразделяются на двигатели внутреннего сгорания, в к-рых процессы сгорания топлива и преобразования теплоты в механич. работу происходят в одних и тех же рабочих полостях (цилиндрах) Т. д., и двигатели внешнего сгорания, в к-рых рабочее тело получается (или нагревается) вне самого Т. д. в спец. устройствах (см., напр., Стирлинга двигатель, Паровая машина). о. H. Емин.

ТЕПЛОВОЙ КОМФОРТ, комфортное тепловое состояние, функциональное состояние организма человека, характеризующееся определённым содержанием и распределением теплоты в поверхностных и глубоких тканях тела при минимальном напряжении аппарата терморегуляции. Субъективно такое состояние оценивается как наиболее предпочитаемое. Объективно оно характеризуется постоянством температуры тела, минимальной активностью потовых желез (неощутимое потоотделение 40-60 г/ч), небольшими периодич. колебаниями темп-ры конечностей, особенно кистей и стоп (в диапазоне 30-31 °С) при почти неизменном уровне темп-ры кожи в области туловища (ок. 33 °С), относит, постоянством средней темп-ры кожи (32-33 °С), оптимальным уровнем функционирования сердечно-сосудистой, дыхательной, пищеварительной, выделительной и др. физиол. систем организма, а также наивысшим уровнем умственной работоспособности. Т. к. наблюдается у человека, находящегося в состоянии мышечного покоя при теплопродукции ок. 80 ккал/ч (1 ккал = 4,19 кдж) или при лёгкой работе с теплопродукцией, не превышающей 150 ккал/ч (канцелярский труд, работа инженера, оператора, науч. сотрудника и т. п.), при известном сочетании параметров микроклимата -температуры, относительной влажности, скорости движения воздуха и теплового излучения. Нормативы микроклимата для жилых и общественных зданий, обеспечивающие Т. к., разрабатываются дифференцирование, применительно к разным климатическим зонам, сезонам года и возрастным группам. У большинства взрослых практически здоровых людей, постоянно проживающих в умеренной климатической зоне и одетых в обычную комнатную одежду, Т. к. наблюдается зимой при темп-ре воздуха 18-22 °С, летом 23-25 °С, при разнице темп-р воздуха и ограждений не более 3 °С, относительной влажности 30-60% , скорости движения воздуха 0,05-0,15 м/сек (зимой) и 0,2-0,4 м/сек (летом). Зоне комфорта обнажённого человека соответствует темп-pa воздуха 28-30 °С. Под влиянием ряда факторов (физич. работа, акклиматизация к теплу или холоду, нек-рые патологич. состояния) зона Т. к. несколько изменяется. Тренировка и закаливание организма путём применения воздушных ванн и водных процедур с постепенным снижением темп-ры раздражителя, а также динамического микроклиматич. воздействия, понижая нижнюю границу, расширяют зону Т. к., чем повышают сопротивляемость организма к простудным факторам. В ночное время рекомендуется умеренное понижение темп-ры вдыхаемого воздуха на 1-2 °С при хорошей теплоизоляции тела, что способствует глубине сна. У детей в первые годы жизни, особенно у новорождённых, и у пожилых людей из-за функциональной недостаточности аппарата терморегуляции зона комфортного микроклимата сужается. Индивидуальные различия границ зоны Т. к. зависят от особенностей основного обмена, акклиматизации, развития подкожного жирового слоя, привычки к ношению одежды с той или иной теплоизоляцией и т. п.

Лит-: Слон им А. Д., Воронин H. М., Влияние на организм климата как средства профилактики и курортного лечения, в кн.: Основы курортологии, ч. 1, М., 1959, с. 20-59; Г о р о м о с о в М. С., Микроклимат жилищ и его гигиеническое нормирование, М.. 1963; Руководство по коммунальной гигиене, т. 3. М., 1963, с. 203-51; К а н д р о р И. С., Демина Д. М., Р а т н е р Е. М.., Физиологические принципы санитарно-климатического районирования территории СССР, М., 1974.Е- М. Ратнер.

ТЕПЛОВОЙ НАСОС, устройство для переноса тепловой энергии от теплоотдатчика с низкой темп-рой (чаще всего -окружающей среды) к теплоприёмнику с высокой темп-рой. Для работы Т. н. необходима затрата внеш. энергии (напр., механич., электрич., химич.). Процессы, происходящие в Т. н., подобны процессам, осуществляемым рабочим телом в холодильной машине, с той разницей, что назначение холодильной машины -производство холода, а Т. н.- производство теплоты (см. Холодильные циклы). Рабочим телом в Т. н. обычно является жидкость с низкой темп-рой кипения (напр., фреон, аммиак). Теплоприёмник Т. н. получает, кроме теплоты, эквивалентной совершаемой внеш. работе, теплоту, перенесённую от теплоотдатчика, напр, речной воды; следовательно, коэфф. преобразования энергии в Т. н. всегда больше единицы и такой процесс более выгоден, чем непосредств. превращение электрич., механич. или химич. энергии в теплоту. Однако условия развития энергетики, заключающиеся в совместной выработке теплоты и электроэнергии, ограничивают использование Т. н., к-рый применяется только в тех случаях, когда др. виды теплоснабжения затруднены (например, при удалённости объекта от ТЭЦ). Иногда Т. н. применяется для отопления в районах с жарким климатом, т. к. в летний период эта же установка охлаждает подаваемый в здание воздух. Т. н. получил широкое распространение во время 2-й мировой войны 1939-45 в связи с топливными затруднениями, особенно в странах, где имеется в избытке дешёвая электрическая энергия гидростанций (например, в Швейцарии, Швеции, Норвегии и др.). В. С. Бунин.

ТЕПЛОВОЙ ПОГРАНИЧНЫЙ СЛОЙ, слой теплоносителя (жидкости или газа) между его осн. потоком и поверхностью теплообмена; в этом слое темп-pa теплоносителя меняется от темп-ры стенки до темп-ры потока. См. Пограничный слой.

ТЕПЛОВОЙ ПОТОК, количество теплоты, переданное через изотермическую поверхность в единицу времени. Размерность Т. п. совпадает с размерностью мощности. Т. п. измеряется в ваттах или ккал/ч (1 вт = 0,86 ккал/ч). Т. п., отнесённый к единице изотермич. поверхности, наз. плотностью Т. п., удельным Т. п. или тепловой нагрузкой; обозначается обычно q, измеряется в вт/м2 или ккал/(м2'Ч). Плотность Т. п.- вектор, любая компонента к-рого численно равна количеству теплоты, передаваемой в единицу времени через единицу площади, перпендикулярной к направлению взятой компоненты.

ТЕПЛОВОЙ ПРОЦЕСС, термодинамический процесс, изменение состояния физ. системы (рабочего тела) в результате теплообмена и совершения работы. Если Т. п. протекает настолько медленно, что в каж