БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431ных для видимого света; оно получило развитие в 70-х гг. Т. находит всё более широкое применение в мед. и технич. диагностике, навигации, геологич. разведке, метеорологии, дефектоскопии, при науч.-технич. исследованиях тепловых процессов, а также в военном деле и т. д. (см. Инфракрасная техника).

Лит.: Ощепков П. К., Меркул о в А. П., Интроскопия, М., 1967; Г у р евич В. 3., Энергия невидимого света, М., 1973; Левитин И. Б., Инфракрасная техника, Л., 1973; Козелкин В. В., Усольцев И. Ф., Основы инфракрасной техники, М., 1974; С о н и н А. С., Степанов Б. М., Приборы на жидких кристаллах, "Природа", 1974, Х6 11; К л юкин Л. М., Сонин А. С., Степанов Б. М., Фотографируется тепло, "Наука и жизнь", 1975, № 3; И р и с о в а H. А., Тимофеев Ю. П., Фридман А. С., Люминесценция позволяет видеть невидимое, "Природа", 1975, № 1. К. М. Климов, Ю. П.Тимофеев.

ТЕПЛОВОЕ ДВИЖЕНИЕ, беспорядочяое (хаотическое) движение микрочастиц (молекул, атомов, электронов и др.), из к-рых состоят все тела. Т. д.- это особая форма движения материи, качественно отличная от обычного механич. движения, при к-ром все части тела движутся упорядоченно. Наиболее убедительным экспериментальным доказательством Т. д. служит броуновское движение. Закономерности Т. д, изучаются термодинамикой, статистической физикой, кинетикой физической. Кинетическая энергия Т. д. прямо пропорциональна абс. темп-ре, входит составной частью во внутреннюю энергию физ. системы.

ТЕПЛОВОЕ ИЗЛУЧЕНИЕ, температурное излучение, электромагнитное излучение, испускаемое веществом и возникающее за счёт его внутр. энергии (в отличие, напр., от люминесценции, возникающей за счёт внеш. источников энергии). Т. и. имеет сплошной спектр, положение максимума к-рого зависит от темп-ры вещества. С её повышением возрастает общая энергия испускаемого Т. и., а максимум перемещается в область малых длин волн. Т. и. испускают, напр., поверхность накалённого металла, .земная атмосфера и т. д.

Т. и. возникает в условиях детального равновесия в веществе (см. Детального равновесия принцип) для всех безызлучательных процессов, т. е. для различных типов столкновений частиц в газах и плазме, для обмена энергиями электронного и колебат. движений в твёрдых телах и т. д. Равновесное состояние вещества в каждой точке пространства •состояние локального термодинамического равновесия (ЛТР) - при этом характеризуется значением темп-ры, от к-рого и зависит Т. и. вещества в данной точке.

В общем случае системы тел, для к-рой осуществляется лишь ЛТР и различные точки к-рой имеют различные темп-ры, Т. и. не находится в термодинамическом равновесии с веществом. Горячие тела испускают больше, чем поглощают, а более холодные - наоборот. Происходит перенос излучения от более горячих тел к более холодным. Для поддержания стационарного состояния, при к-ром сохраняется распределение темп-ры в системе, необходим подвод теплоты к более горячим телам и отвод от более холодных; это может осуществляться как в природных условиях (например, в атмосфере Земли), так и искусственно (например, в лампах накаливания).

При полном термодинамическом равновесии все части системы тел имеют одну темп-ру и энергия Т. и., испускаемого каждым телом, компенсируется энергией поглощаемого этим телом Т. и. др. тел. В этом случае Т. и. находится в термодинамическом равновесии с веществом и наз. равновесным излучением (равновесным является Т. и. абсолютно чёрного тела). Спектр равновесного излучения не зависит от природы вещества и определяется Планка законом излучения.

Для Т. и. нагретых тел в общем случае справедлив Кирхгофа закон излучения, связывающий их испускательную и поглощательную способности с испускательной способностью абсолютно чёрного тела.

При наличии ЛТР, применяя законы излучения Кирхгофа и Планка к испусканию и поглощению Т. и. в газах и плазме, можно изучать процессы переноса излучения. Такое рассмотрение широко используется в астрофизике, в частности в теории звёздных атмосфер.

Лит.: План к М., Теория теплового излучения, пер. с нем., Л.- М., 1935; С оболев В. В., Перенос лучистой энергии в атмосферах звезд и планет, М., 1956; Босворт Р.Ч. Л., Процессы теплового переноса, пер. с англ., М., 1957; Е л ь я ш ев и ч М. А., Атомная и молекулярная спектроскопия, М., 1962. М. А. Ельяшевич.

ТЕПЛОВОЕ РАСШИРЕНИЕ, изменение размеров тела в процессе его нагревания. Количественно Т. р. при постоянном давлении характеризуется изобарным коэфф. расширения (объёмным коэфф. Т. р.)

[25I-64.jpg]

. Практически значение а определяется из соотношения

[25I-65.jpg]

где V - объём газа, жидкости или твёрдого тела при темп-ре Т2>Т1, V-исходный объём тела (разность темп-р Т2 - Т1 берётся небольшой). Для характеристики T. р. твёрдых тел наряду с а вводят коэфф. линейного Т. р. где l - первоначальная длина

[25I-66.jpg]

тела вдоль выбранного направления. В общем случае анизотропных тел

[25I-67.jpg][25I-68.jpg]

причём различие или равенство линейных кофф. Т. р. аx, аy, аz вдоль кристаллографич. осей x, у, z определяется симметрией кристалла. Напр., для кристаллов кубич. системы, так же как и для изотропных тел,

[25I-69.jpg][25I-70.jpg]и [25I-71.jpg]

Для большинства тел а>0, но существуют исключения, напр, вода при нагреве от 0 до 4 °С при атм. давлении сжимается (а<0). Зависимость а от Т наиболее заметна у газов (для идеального газа а =1/Т), у жидкостей она проявляется слабее. У ряда веществ в твёрдом состоянии - кварца, инвара и других - коэффициент а мал и практически постоянен в широком интервале температур. При Т->0 коэффициент T. р. а->0.

Т. р. газов обусловлено увеличением кинетич. энергии частиц газа при его нагреве и совершением за счёт этой энергии работы против внеш. давления. У твёрдых тел и жидкостей Т. р. связано с несимметричностью (ангармоничностью) тепловых колебаний атомов, благодаря чему межатомные расстояния с ростом Т увеличиваются. Экспериментальное определение а и а., осуществляется методами дилатометрии. Т. р. тел учитывается при конструировании всех установок, приборов и машин, работающих в переменных темп-рных условиях.

Лит.: Новикова С. И., Тепловое расширение твердых тел, М., 1974; Г и р шф е л ь д е р Дж., К е р т и с с Ч.,БердР., Молекулярная теория газов и жидкостей, пер. с англ., М., 1961; Перри Д ж., Справочник инженера-химика, пер. с англ., т. 1, Л., 1969.

Значение изобарического коэффициента расширения некоторых газов, жидкостей и твёрдых тел при атмосферном давлении
























Коэффициент объёмного расширения Коэффициент линейного расширения





Вещество

Темп-ра, °С

аХ103, (°С)-1

Вещество

Темп-ра, °С

алХ106, (°С)-1





Газы

Гелий



0-100



3,658

Твёрдые тела Углерод















-"-

3,661

Алмаз

20

1,2





Кислород

-"-

3,665

Графит

-"-

7,9





Азот

-"-

3,674

Кремний

3-18

2,5





Воздух (без СО2)

-"-

3,671

Кварц || оси

40

7,8





Жидкости











Кварц | оси

40

14,1





Вода

10

0,0879

Кварц плавленный

0-100

0,384





20

0,2066

Стекло

крон



0-100



~9





80

0,6413





Ртуть

20

0,182

флинт

0-100

~ 7





Глицерин

-"-

0,500

Вольфрам

25

4,5





Бензол

-"-

1,060

Медь

25

16,6





Ацетон

-"-

1,430

Латунь

20

18,9





Этиловый спирт

-"-

1,659

Алюминий

25

25