БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431 могут работать независимо от ориентации в поле тяжести и в невесомости, наиболее распространён именно этот тип Т. т. Эффективная теплопроводность Т. т. (отношение плотности теплового потока через Т. т. к падению темп-ры на единицу длины трубы) в десятки тысяч раз больше, чем теплопроводность Си, Ag или А1, и достигает ~ 107 ет/(м -К). Малый вес, высокая надёжность и автономность работы Т. т., большая эффективная теплопроводность, возможность использования в качестве термостатирующего устройства обусловили применение Т. т. в энергетике, хим. технологии, космич. технике, электронике и ряде др. областей техники.

Схема действия тепловой трубы: q -идущий по трубе тепловой поток.

Лит.: Елисеев В. Б., Сергеев Д. И., Что такое тепловая труба?, М., 1971; Тепловые трубы. Сб., пер. с англ, и нем., под ред. Э. Э. Шпильрайна, М., 1972. С. П. Малышенко.

ТЕПЛОВАЯ ФУНКЦИЯ, то же, что энтальпия.

ТЕПЛОВАЯ ЭЛЕКТРОСТАНЦИЯ (ТЭС), электростанция, вырабатывающая электрич. энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органич. топлива. Первые ТЭС появились в кон. 19 в. (в 1882 - в Нью-Йорке, 1883 - в Петербурге, 1884 - в Берлине) и получили преимущественное распространение. В сер, 70-х гг. 20 в. ТЭС - осн. вид электрич. станций. Доля вырабатываемой ими электроэнергии составляла: в СССР и США св. 80% (1975), в мире около 76% (1973).

Среди ТЭС преобладают тепловые паротурбинные электростанции (ТПЭС), на к-рых тепловая энергия используется в парогенераторе (см. Котлоагрегат) для получения водяного пара высокого давления, приводящего во вращение ротор паровой турбины, соединённый с ротором электрич. генератора (обычно синхронного генератора). В СССР на ТПЭС производится (1975) ~99% электроэнергии, вырабатываемой ТЭС. В качестве топлива на таких ТЭС используют уголь (преимущественно), мазут, природный газ, лигнит, торф, сланцы. Их кпд достигает 40%, мощность -3 Гит; в СССР создаются ТПЭС полной проектной мощностью до 5-6 Гвт.

ТПЭС, имеющие в качестве привода электрогенераторов конденсационные турбины и не использующие тепло отработавшего пара для ,снабжения тепловой энергией внешних потребителей, наз. конденсационными электростанциями (официальное назв. в СССР - Гос. районная электрич. станция, или ГРЭС). На ГРЭС вырабатывается ок. 2/3 электроэнергии, производимой на ТЭС. ТПЭС, оснащённые теплофикационными турбинами и отдающие тепло отработавшего пара пром. или коммунально-бытовым потребителям, наз. теплоэлектроцентралями (ТЭЦ); ими вырабатывается ок. 1/3 электроэнергии, производимой на ТЭС.

ТЭС с приводом электрогенератора от газовой турбины наз. газотурбинными электростанциями (ГТЭС). В камере сгорания ГТЭС сжигают газ или жидкое топливо; продукты сгорания с температурой 750-900 °С поступают в газовую турбину, вращающую электрогенератор. Кпд таких ТЭС обычно составляет 26-28%, мощность - до нескольких сотен Мет. ГТЭС обычно применяются для покрытия пиков электрич. нагрузки (см. Пиковая электростанция).

ТЭС с парогазотурбинной установкой, состоящей из паротурбинного и газотурбинного агрегатов, наз. п а р о г азовой электростанцией (ПГЭС), кпд к-рой может достигать 42 -43%. ГТЭС и ПГЭС также могут отпускать тепло внешним потребителям, т. е. работать как ТЭЦ.

Иногда к ТЭС условно относят атомные электростанции (АЭС), электростанции с магнитогидродинамическими генераторами (МГДЭС) и геотермические электростанции.

Лит.: Энергетика СССР в 1971 - 1975 годах, М., 1972; Р ы ж к и н В. Я., Тепловые электрические станции, М., 1976 (в печати). В. Я. Рыжкин.

ТЕПЛОВИДЕНИЕ, получение видимого изображения объектов по их собственному либо отражённому от них тепловому (инфракрасному) излучению; служит для определения местоположения и формы объектов, находящихся в темноте или в оптически непрозрачных средах, а также для изучения степени нагретости отд. участков сложных поверхностей и внутр. структуры тел, непрозрачных в видимом свете. Каждое нагретое тело испускает тепловое излучение, интенсивность и спектр к-рого зависят от свойств тела и его темп-ры. Для тел с темп-рой в несколько десятков °С характерно излучение в инфракрасной области спектра электромагнитных колебаний. Инфракрасное излучение невидимо для человеческого глаза, но может быть обнаружено различными приёмниками теплового излучения (см. Приёмники излучения) и тем или иным способом преобразовано в видимое изображение.

Первые тепловизионные системы были созданы в кон. 30-х гг. 20 в. и частично применялись в период 2-й мировой войны 1939-45 для обнаружения воен. и пром. объектов; в этих системах использовались тепловые приёмники (болометры, термопары), преобразующие инфракрасное излучение в электрич. сигналы. С помощью оптико-механич. сканирующей системы (см. Сканирование) отд. точки объекта попеременно проецировались на приёмник, а полученные с него электрич. сигналы подавались на вход электроннолучевой трубки, аналогичной приёмной телевизионной трубке. На люминесцентном экране трубки формировалось видимое изображение объекта (см. Теплопеленгация). В 70-х гг. такие системы Т., получившие назв. теплов и з о р о в, продолжают успешно развиваться, причём в них используют не только тепловые, но и охлаждаемые фотоэлектрические приёмники (напр., на основе InSb или HgCdTe2), которые способны воспринимать излучение с длиной волны до 5-6 мкм (максимум теплового излучения при комнатной темп-ре приходится на длины волн ок. 10 мкм), а также пироэлектрические приёмники. Эти приёмники обладают высокой чувствительностью (соизмеримой с флуктуациями теплового излучения), что позволяет получать с их помощью видимые изображения объектов, находящихся на расстоянии до 10-15 км и имеющих темп-ру поверхности, отличающуюся от темп-ры окружающей среды менее чем на 1°С. Такие тепловизоры позволяют обнаруживать разность темп-р (до 0,1 °С) отд. участков человеческого тела, что представляет значит, интерес для ранней диагностики образования опухолей и нарушений системы кровообращения.

В кон. 60 - нач. 70-х гг. были созданы принципиально новые, более простые устройства Т., применение к-рых предпочтительнее, если только их чувствительность оказывается достаточной. В 'Этих устройствах тепловое изображение объекта непосредственно (без промежуточного преобразования инфракрасного излучения в электрич. сигналы) проецируется на экран, покрытый тонким слоем вещества, к-рое в результате к.-л. физ.-хим. процесса, происходящего при его нагреве, изменяет свои оптич. характеристики (коэфф. отражения или пропускания видимого света, интенсивность или цвет собственного свечения и т. д.). На экранах таких устройств можно наблюдать видимые изображения объектов и фотографировать их. В качестве температурно-чувствительных веществ используют жидкие кристаллы, кристаллич. люминофоры, тонкие плёнки полупроводников, магнитные тонкие плёнки, термочувствительные лаки и краски и др.

Так, жидкие кристаллы по мерс нагревания постепенно изменяют свой цвет (и его оттенки) от красного до фиолетового, причём многокомпонентные смеси холестерических жидких кристаллов имеют темп-рный интервал цветовой индикации менее 0,1 °С. Термочувствительные краски при нагреве один или два раза изменяют свой цвет (обычно необратимо), фиксируя тем самым одно или два значения темп-ры, что удобно в тех случаях, когда достаточно узнать, нагрет ли исследуемый объект (напр., деталь машины) до некоторой критич. темп-ры. В нек-рых полупроводниковых плёнках (особенно в плёнках Se и его производных) с повышением темп-ры область прозрачности смещается в сторону длинных волн, что позволяет, применяя дополнит, источник видимого света, регистрировать изменение их темп-ры на 1-5 °С. Применение в Т. люминофоров основано на явлении тушения люминесценции: яркость свечения нек-рых люминофоров (напр., соединения ZnS CdS Ag Ni). возбуждённых ультрафиолетовым излучением, резко уменьшается по мере их нагревания. Эти люминофоры позволяют визуально наблюдать изменение темп-ры на 0,2-0,3 °С, причём эффект тушения полностью обратим. Приборы, основанные на применении люминофоров, позволяют видеть не только тепловые лучи, но и радиоволны (см. Радиовидение). В магнитных тонких плёнках при нагреве изменяется ориентация осей намагничивания магнитных доменов, ориентирующих, в свою очередь, ферромагнитные частицы коллоидного раствора, нанесённого на поверхность плёнки. Этот "магнитный рельеф", возникающий под действием тепловых лучей, при намагничивании плёнки становится видимым в обычном отражённом свете. Рассмотренные методы Т. реализованы в ряде устройств, получивших назв. термофотоаппарат, визуализатор, термоинтроскоп, радиовизор и др.

Плёнки вышеуказанных веществ могут наноситься и непосредственно на объект-для изучения распределения темп-ры его поверхности; это науч. направление, получившее назв. термографии, иногда наз. также Т. (в этом случае, однако, регистрируется темп-pa, а не тепловое излучение объекта). К Т. можно отнести также и применение инфракрасных лазеров (напр., на парах СО2, с длиной волны 10,6 мкм, соответствующей максимуму теплового излучения при темп-ре 23 °С) в целях просвечивания объектов, непрозрач