БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431ют в золоотвалы. Летучую золу, уловленную в золоуловителях, удаляют с помощью воды или воздуха. При использовании в качестве топлива мазута в топливное х-во входят мазутные баки, насосы, подогреватели, трубопроводы.

Гл. корпус ТПЭС (в к-ром размещены энергоблоки), вспомогат. производств. установки и сооружения, электрич. распределительные устройства, лаборатории, мастерские, склады и пр. размещают на производственно и территории ТПЭС (пл. 30-70 га). Территорию для конденсационной электростанции выбирают вне городов, возможно ближе к источнику водоснабжения и топливной базе. ТЭЦ располагают вблизи потребителей тепла.

Как и всякая электростанция, ТПЭС должна иметь высокую надёжность, обладать свойством манёвренности и быть экономичной. Надёжность оборудования ТПЭС должна быть достаточной для того, чтобы в каждый момент времени ТПЭС могла развивать мощность, равную мощности электрич. нагрузки (изменяющейся во времени), и обеспечивать необходимое качество электроэнергии в энергосистеме. Надёжность оборудования и энергоблоков ТПЭС,зависящую, в частности, от обеспечения требуемого водного режима, чистоты пара, конденсата и воды в пароводяном тракте электростанции, оценивают готовности коэффициентом, т. е. относит, продолжительностью нахождения агрегата или энергоблока в работе и в состоянии готовности к работе (в резерве). Величина коэфф. готовности энергоблока определяется соответств. показателями турбоагрегата и парогенератора и находится в пределах 0,85-0,90. Манёвренность обеспечивает быстрое изменение мощности электростанции в соответствии с изменением мощности нагрузки. Экономичность электростанции характеризуется величиной расчётных удельных затрат на производство 1 кет -ч электроэнергии. Расчётные удельные затраты определяются единовременными (за годы стр-ва станции) капиталовложениями, а также ежегодными издержками производства с момента ввода оборудования в эксплуатацию (затратами на топливо, выплатой заработной платы персоналу, амортизационными отчислениями) и на ТПЭС в СССР составляют ок. 1 копейки на кет -ч. Важными экономич. показателями являются также: удельная величина капиталовложений (стоимость 1 кет установленной мощности зависит от типа ТПЭС и др. факторов и составляет 100-200 рублей); удельная численность персонала (штатный коэфф. равен 0,5-1,0 человек на Мет); удельный расход условного топлива (~340 г/квт-ч). Одно из существенных требований к ТПЭС -выработка электрической и тепловой энергии с сохранением чистоты окружающей среды (воздушного и водного бассейнов).

Рис. 2. Щит управления энергоблоками тепловой паротурбинной электростанции.

Совр. ТПЭС - высокоавтоматизированное предприятие, на к-ром осуществляется автоматич. регулирование всех осн. процессов не только в режиме нормальной эксплуатации оборудования, но и в режиме пуска энергоблоков (рис. 2). Автоматизированные системы управления (АСУ) крупных ТПЭС включают ЭВМ. В СССР вычислит, технику и логич. устройства применяют на энергоблоках мощностью 200-300 Мет и выше.

Лит.: Жилин В. Г., Проектирование тепловых электростанций большой мощности, М., 1964; Купцов И. П., Иоффе Ю. Р., Проектирование и строительство тепловых электростанций, М., 1972; Рыжкин В. Я., Тепловые электрические станции, М., 1976 (в печати). В. Я. Рыжкин.

ТЕПЛОВАЯ СЕТЬ, система трубопроводов (теплопроводов) для транспортирования и распределения теплоносителя (горячей воды или пара) при централизованном теплоснабжении. Различают магистральные и распределительные Т. с.; потребители подсоединяются к распределительным Т. с. через ответвления. По способу прокладки Т. с. подразделяют на подземные и надземные (воздушные). В городах и посёлках наиболее распространены подземная прокладка труб в Kaj налах и коллекторах (совместно с др. коммуникациями) и т. н. бесканальная прокладка - непосредственно в грунте. Надземная прокладка (на эстакадах или спец. опорах) обычно осуществляется на территориях пром. предприятий и вне черты города. Для сооружения Т, с. применяют гл. обр. стальные трубы диаметром от 50 мм (подводка к отд. зданиям) до 1400 мм (магистральные Т. с.).

Темп-pa теплоносителя в Т. с. изменяется в широких пределах; для компенсации темп-рных удлинений трубопроводов применяют компенсаторы - обычно гибкие (П-образные) для трубопроводов небольшого диаметра (до 300 мм) и осевые (сальниковые и линзовые) для трубопроводов большого диаметра. Снижение тепловых потерь в трубопроводах Т. с. достигается их теплоизоляцией. В каналах и при надземной прокладке для тепловой изоляции используются преим. изделия из минеральной ваты; при бесканальной прокладке применяют изоляционные материалы, наносимые на трубопровод в заводских условиях (пенобетон, битумоперлит и др.), а также сыпучие, укладываемые в траншею в процессе монтажа Т. с. (напр., асфальтоизол). Тепловая изоляция используется также для защиты наружной поверхности теплопровода от коррозии. С этой целью на теплоизоляционную оболочку наносят слой водонепроницаемого материала. Применяют и спец. покрытия (из изола, стеклоэмалевыс, эпоксидные и др.), наносимые непосредственно на поверхность трубопровода. Для защиты от коррозии внутр. поверхности трубопровода и предотвращения образования на ней накипи вода, заполняющая Т. с., проходит водопадготовку.

Схемы магистральных Т. с. могут быть радиальными (тупиковыми) или кольцевыми. Во избежание перерывов в снабжении теплом предусматривается соединение отд. магистральных сетей между собой, а также устройство перемычек между ответвлениями. При большой длине магистральных Т. с. на них устанавливают подкачивадощие насосные подстанции. На трассе Т. с. и в местах ответвлений оборудуют подземные камеры, в к-рых размещают запорно-регулировочную арматуру, сальниковые компенсаторы и пр.

Лит.: Л я м и н А. А., Скворцов А. А., Проектирование и расчет конструкций тепловых сетей, 2 изд., М., 1965; Громов H. К., Абонентские установки водяных тепловых сетей, М., 1968; В и т а л ье в В. П., Бесканальные прокладки тепловых сетей, М., 1971; Соколов Е. Я., Теплофикация и тепловые сети, 4 изд., М., 1975. H. М. Зингер.

"ТЕПЛОВАЯ СМЕРТЬ" ВСЕЛЕННОЙ, ошибочный вывод о том, что все виды энергии во Вселенной в конце концов должны перейти в энергию теплового движения, к-рая равномерно распределится по веществу Вселенной, после чего в ней прекратятся все макроскопические процессы .

Этот вывод был сформулирован Р. Клаузиусом (1865) на основе второго начала термодинамики. Согласно второму началу, любая физ. система, не обменивающаяся энергией с др. системами (для Вселенной в целом такой обмен, очевидно, исключён), стремится к наиболее вероятному равновесному состоянию - к т. н. состоянию с максимумом энтропии. Такое состояние соответствовало бы "Т. с." В. Ещё до создания совр. космологии были сделаны многочисл. попытки опровергнуть вывод о "Т. с." В. Наиболее известна из них флуктуационная гипотеза Л. Болъцмана (1872), согласно к-рой Вселенная извечно пребывает в равновесном изотермич. состоянии, но по закону случая то в одном, то в другом её месте иногда происходят отклонения от этого состояния; они происходят тем реже, чем большую область захватывают и чем значительнее степень отклонения. Совр. космологией установлено, что ошибочен не только вывод о "Т. с. " В., но ошибочны и ранние попытки его опровержения. Связано это с тем, что не принимались во внимание существенные физ. факторы и прежде всего тяготение. С учётом тяготения однородное изотермич. распределение вещества вовсе не является наиболее вероятным и не соответствует максимуму энтропии. Наблюдения показывают, что Вселенная резко нестационарна. Она расширяется, и почти однородное в начале расширения вещество в дальнейшем под действием сил тяготения распадается на отд. объекты, образуются скопления галактик, галактики, звёзды, планеты. Все эти процессы естественны, идут с ростом энтропии и не требуют нарушения законов термодинамики. Они и в будущем с учётом тяготения не приведут к однородному изотермич. состоянию Вселенной - к "Т. с." В. Вселенная всегда нестатична и непрерывно эволюционирует.

Лит.: Зельдович Я. Б., Новиков И. Д., Строение н эволюция Вселенной, М., 1975. И.Д.Новиков.

ТЕПЛОВАЯ ТРУБА, теплопередающее устройство, способное передавать большие тепловые мощности при малых градиентах темп-ры. Т. т. представляет собой герметизированную конструкцию (трубу), частично заполненную жидким теплоносителем (рис.). В нагреваемой части Т. т. (в зоне нагрева, или испарения) жидкий теплоноситель испаряется с поглощением теплоты, а в охлаждаемой части Т. т. (в зоне охлаждения, или конденсации) пар, перетекающий из зоны испарения, конденсируется с выделением теплоты. Движение пара от зоны испарения к зоне конденсации происходит за счёт разности давлений насыщенного пара, определяемой разностью темп-р в зонах испарения и конденсации. Возвращение жидкости в зону испарения осуществляется либо за счёт внешних воздействий (напр., силы тяжести), либо под действием капиллярной разности давлений по капиллярной структуре (фитилю), расположенной внутри Т. т. (чаще всего на её стенках). В связи с тем, что Т. т. с капиллярной структурой для возврата жидкости