БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431ение (гипотермия) или повышение (гипертермия) Т. т. на неск. градусов нарушает процессы жизнедеятельности и может привести к охлаждению или перегреванию организма и даже к его гибели. При мн. заболеваниях Т. т. повышается до определённых пределов и регулируется организмом на новом уровне, напр, при лихорадке.

Лит.: Бартон А. иЭдхолм О., Человек в условиях холода, пер. с англ., М., 1957; П р о с с е р Л., Браун Ф., Сравнительная физиология животных, пер. с англ., М., 1967; H ens el H., Neural processes in thermoregulation, "Physiological Reviews", 1973, v. 53, № 4. К. П. Иванов.

ТЕМПЕРАТУРА ФАЗОВОГО ПЕРЕХОДА, темп-pa, при к-рой в физич. системе происходит равновесный фазовый переход первого (кипение, плавление) или второго рода (переход в сверхпроводящее состояние и др.). Т. ф. п. зависит от внеш. давления согласно Клапейрона-Клаузиуса уравнению (для фазовых переходов первого рода)и Эренфесп.а соотношениям (для фазовых переходов второго рода).

ТЕМПЕРАТУРНОЕ ИЗЛУЧЕНИЕ, то же, что тепловое излучение.

ТЕМПЕРАТУРНОЕ ПОЛЕ, совокупность значений темп-р во всех точках рассматриваемого пространства в данный момент времени. Математически Т. п. может быть описано уравнением зависимости темп-р от 3 пространственных координат и от времени (нестационарное трёхмерное Т. п.). Для установившихся (стационарных) режимов Т. п. от времени не зависит. Во многих случаях может рассматриваться зависимость Т. п. от двух, а иногда от одной координаты. Графически Т. п. изображают посредством изотермич. поверхностей, соединяющих все точки поля с одинаковой температурой, а для двухмерного поля - посредством семейства изотерм. Расстояние между изотермами обратно пропорционально градиенту темп-ры; при этом скалярному Т. п. соответствует векторное поле градиентов темп-ры (см. Поля теория).

ТЕМПЕРАТУРНЫЕ ВОЛНЫ, периодич. изменения распределения темп-ры в среде, связанные с периодич. колебаниями плотности потоков теплоты, поступающих в среду (с переменностью источников теплоты). Т. в. испытывают сильное затухание при распространении, для них характерна значительная дисперсия, т. е. зависимость скорости от частоты. Обычно коэфф. затухания Т. в. приближённо равен 2л/лямбда, где лямбда - длина волны. Для монохроматич. плоской Т. в., распространяющейся вдоль теплоизолированного стержня постоянного поперечного сечения, лямбда связана с периодом колебаний т и коэфф. температуропроводности у. соотношением: лямбда = 2№лкт; при этом скорость v перемещения гребней волны равна v = 4лк лямбда = №4лк/т. Т. о., чем меньше период колебаний (меньше длина волны), тем Т. в. быстрее распространяются и затухают на меньших расстояниях. Глубина проникновения плоской Т. в., определяемая как расстояние, на к-ром колебания темп-ры уменьшаются ве = 2,7 раза, равна лямбда /2л =v кт/л, т. е. чем меньше период, тем меньше глубина проникновения. Напр., глубина проникновения в почву суточных колебаний темп-ры почти в 20 раз меньше глубины проникновения сезонных колебаний. В технике Т. в. учитывают при расчётах теплопроводности стен зданий, защитной внутр. облицовки печей, блоков двигателей внутр. сгорания и т. д. В физике изучение Т. в. является одним из методов определения температуропроводности, теплоёмкости и др. тепловых характеристик материалов. Метод Т. в. особенно удобен для измерения характеристик чистых веществ при низких температурах.

Лит.: Карлслоу Г. С., Е г е р Д., Теплопроводность твердых тел, пер, с англ., М., 1964. И.П.Крылов.

ТЕМПЕРАТУРНЫЕ НАПРЯЖЕНИЯ, напряжения, возникающие в теле вследствие неравномерного распределения темп-ры в различных частях тела и ограничения возможности теплового расширения (или сжатия) со стороны окружающих частей тела или со стороны других тел, окружающих данное. Пример Т. н.- растягивающие напряжения в натянутом между неподвижными опорами проводе при его охлаждении. Т. н. могут оказаться причиной разрушения деталей машин, сооружений и конструкций. Для предотвращения таких разрушений используют т. н. температурные компенсаторы (зазоры между рельсами, зазоры между блоками плотины, катки на опорах моста и т. п.).

ТЕМПЕРАТУРНЫЕ ШКАЛЫ, системы сопоставимых числовых значений температуры. Темп-pa не является непосредственно измеряемой величиной; её значение определяют по температурному изменению к.-л. удобного для измерения физич. свойства термометрич. вещества (см. Термометрия). Выбрав термометрич. вещество и свойство, необходимо задать начальную точку отсчёта и размер единицы темп-ры - градуса. Таким образом определяют эмпирич. Т. ш. В Т. ш. обычно фиксируют две осн. темп-ры, соответствующие точкам фазовых равновесий однокомпонентных систем (т. н. р е п е р н ы е или постоянные точки), расстояние между к-рыми наз. основным температурным интервалом шкалы. В качестве реперных точек используют: тройную точку воды, точки кипения воды, водорода и кислорода, точки затвердевания серебра, золота и др. Размер единичного интервала (единицы темп-ры) устанавливают как определённую долю осн. интервала. За начало отсчёта Т. ш. принимают одну из реперных точек. Так можно определить эмпирич. (условную) Т. ш. по любому термометрич. свойству x. Если принять, что связь между x и темп-рой t линейна, то темп-ра tx = n(xt - xo)/(xn - xo), где xt, x0 и хп - числовые значения свойства x при темп-ре t в начальной и конечной точках осн. интервала, (хп - xo)/n - размер градуса, п - число делений осн. интервала.

В Цельсия шкале, например, за начало отсчёта принята температура затвердевания воды (таяния льда), основной интервал между точками затвердевания и кипения воды разделён на 100 равных частей (п = 100).

Т. ш. представляет собой, т. о., систему последоват. значений темп-ры, связанных линейно со значениями измеряемой физич. величины (эта величина должна быть однозначной и монотонной функцией темп-ры). В общем случае Т. ш. могут различаться по термометрич. свойству (им может быть тепловое расширение тел, изменение электрич. сопротивления проводников с темп-рой и т. п.), по термометрич. веществу (газ, жидкость, твёрдое тело), а также зависеть от реперных точек. В простейшем случае Т. ш. различаются числовыми значениями, принятыми для одинаковых реперных точек. Так, в шкалах Цельсия (°С), Реомюра (°R) и Фаренгейта (°F) точкам таяния льда и кипения воды при нормальном давлении приписаны разные значения темп-ры. Соотношение для пересчёта темп-ры из одной шкалы в другую:

[25I-7.jpg]

Непосредственный пересчёт для Т. ш., различающихся осн. темп-рами, без дополнительных экспериментальных данных невозможен. Т. ш., различающиеся по термометрич. свойству или веществу, существенно различны. Возможно неограниченное число не совпадающих друг с другом эмпирич. Т. ш., т. к. все термометрич. свойства связаны с темп-рой нелинейно и степень нелинейности различна для разных свойств и веществ. Темп-ру, измеренную по эмпирич. Т. ш., называют условной ("ртутная", "платиновая" темп-pa и т. д.), её единицу - условным градусом. Среди эмпирич. Т. ш. особое место занимают газовые шкалы, в к-рых термометрич. веществом служат газы ("азотная", "водородная", "гелиевая" Т. ш.). Эти Т. ш. меньше других зависят от применяемого газа и могут быть (введением поправок) приведены к теоретич. газовой Т. ш. Авогадро, справедливой для идеального газа (см. Газовый термометр). Абсолютной эмпирич. Т. ш. наз. шкалу, абс. нуль к-рой соответствует темп-ре, при к-рой численное значение физич. свойства x = 0 (напр., в газовой Т. ш. Авогадро абс. нуль темп-ры соответствует нулевому давлению идеального газа). Темп-ры t(x) (по эмпирич. Т. ш.) и T(x) (по абс. эмпирич. Т. ш.) связаны соотношением T(x) = t(x) + Т0(x):>, где То(x) - абс. нуль эмпирич. T. ш. (введение абс. нуля является экстраполяцией и не предполагает его реализации).

Принципиальный недостаток эмпирич. Т. ш.- их зависимость от термометрич. вещества - отсутствует у термодинамической Т. ш., основанной на втором начале термодинамики. При определении абс. термодинамич. Т. ш. (шкала Кельвина) исходят из Карно цикла. Если в цикле Карно тело, совершающее цикл, поглощает теплоту Qi при темп-ре Т1 и отдаёт теплоту Q2 при темп-ре Т2, то отношение Т1/Т2 = = Q1/Q2 нe зависит от свойств рабочего тела и позволяет по доступным для измерений величинам QI и Q2 определять абс. темп-ру. Вначале осн. интервал этой шкалы был задан точками таяния льда и кипения воды при атм. давлении, единица абс. темп-ры соответствовала Vioo части осн. интервала, за начало отсчёта была принята точка таяния льда. В 1954 X Генеральная конференция по мерам и весам установила термодинамич. Т. ш. с одной реперной точкой - тройной точкой воды, темп-pa к-рой принята 273,16 К (точно), что соответствует 0,01 °С. Темп-pa Т в абс. термодинамич. Т. ш. измеряется в Кельвинах (К). Термодинамич. Т. ш., в к-рой для точки таяния льда принята темп-pa t = 0 °С, наз. стоградусной. Соотношения между темп-рами, выраженными в шкале Цельсия и абс. термодинамич. Т. ш.:

[25I-8.jpg]

так что размер единиц в этих шкалах одинаков. В США и нек-рых др. странах, где принято измерять темп-ру по шкале Фаренгейта, применяют также абс. Т. ш. Ранкина. Соотношение между Кельвином