БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431тронограммы от молекул газа содержат небольшое число диффузных ореолов.

В основе определения элементарной ячейки кристаллич. структуры и её симметрии лежит измерение расположения рефлексов на электронограммах. Межплоскостное расстояние а в кристалле определяется из соотношения:

d = LЛlr,

где L - расстояние от рассеивающего образца до фотопластинки, Л - деорой-левская длина волны электрона, определяемая его энергией, r - расстояние от рефлекса до центрального пятна, создаваемого нерассеянными электронами. Методы расчёта атомной структуры кристаллов в Э. аналогичны применяемым в рентгеновском 'структурном анализе (изменяются лишь нек-рые коэффициенты). Измерение интенсивностей рефлексов позволяет определить структурные амплитуды |Фhkl|. Распределение электростатич. потенциала ф(x, у,z) кристалла представляется в виде ряда Фурье:
[30-07-1.jpg]

(h, k, I - миллеровские индексы, О - объём элементарной ячейки). Макс, значения ф(x, у, z) соответствуют положениям атомов внутри элементарной ячейки кристалла (рис. 3). Т. о., расчёт значений ф(x, у, z), к-рый обычно осуществляется ЭВМ, позволяет установить координаты х, у, z атомов, расстояния между ними и т. п.

Методами Э. были определены мн. неизвестные атомные структуры, уточнены и дополнены рентгеноструктурные данные для большого числа веществ, в т. ч. мн. цепных и циклич. углеводородов, в к-рых впервые были локализованы атомы водорода, молекулы нитридов переходных металлов (Fe, Cr, Ni, W), обширный класс окислов ниобия, ванадия и тантала с локализацией атомов N и О соответственно, а также 2- и 3-компонентных полупроводниковых соединений, глинистых минералов и слоистых структур. При помощи Э. можно также изучать строение дефектных структур. В комплексе с электронной микроскопией Э. позволяет изучать степень совершенства структуры тонких кристаллич. плёнок, используемых в различных областях совр. техники. Для процессов эпитаксии существенным является контроль степени совершенства поверхности подложки до нанесения плёнок, к-рый выполняется с помощью кикучи-электронограмм: даже незначит. нарушения её структуры приводят к размытию кикучи-линий.

На электронограммах, получаемых от газов, нет чётких рефлексов (т. к. объект не обладает строго периодич. структурой) и их интерпретация осуществляется др. методами.

Интенсивность каждой точки этих электронограмм определяется как молекулой в целом, так и входящими в неё атомами. Для структурных исследований важна молекулярная составляющая, атомную же составляющую рассматривают как фон и измеряют отношение молекулярной интенсивности к общей интенсивности в каждой точке электронограммы. Эти данные позволяют определять структуры молекул с числом атомов до 10-20, а также характер их тепловых колебаний в широком интервале темп-р. Таким путём изучено строение мн. органич. молекул, структуры молекул галогенидов, окислов и др. соединений. Аналогичным методом проводят анализ атомной структуры ближнего порядка (см. Дальний порядок и ближний порядок) в аморфных телах, стёклах и жидкостях.

При использовании медленных электронов их дифракция сопровождается эффектом Оже и др. явлениями, возникающими вследствие сильного взаимодействия медленных электронов с атомами. Недостаточное развитие теории и сложность эксперимента затрудняют однозначную интерпретацию дифракционных картин. Применение этого метода целесообразно в сочетании с масс- и Ожеспектроскопией для исследования атомной структуры адсорбированных слоев, напр, газов, и поверхностей кристаллов на глубину неск. атомных слоев (на 10- 30 А). Эти исследования позволяют изучать явления адсорбции, самые начальные стадии кристаллизации и т. д.

Лит.: П и н с к е р 3. Г., Дифракция электронов, М.- Л., 1949; Вайнштейн Б. К., Структурная электронография, М., 1956; Звягин Б.Б., Электронография и структурная кристаллография глинистых минералов, М., 1964. 3. Г. Пинскер.

ЭЛЕКТРОНОГРАФИЯ МОЛЕКУЛ, изучение атомной структуры молекул методом электронографии. Э. м. в газах и парах, а также электронография молекулярных кристаллов, аморфных тел и жидкостей позволила получить новые и уточнить имеющиеся данные о строении молекул мн. хим. соединений.

ЭЛЕКТРОНОЖ (мед.), аппарат для операционных разрезов мягких тканей током высокой частоты или для коагуляции их с целью остановки кровотечения. Состоит из генератора токов высокой частоты и комплекта электродов (в виде прямых и изогнутых ножей, петель, пластин и др.). См. также Диатермокоагуляция, Элек трохирург ия.

ЭЛЕКТРООБОРУДОВАНИЕ ЗДАНИЙ, совокупность электротехнич. устройств, устанавливаемых в зданиях и предназначаемых для электроснабжения систем водоснабжения, вентиляции, кондиционирования воздуха, искусств, освещения и др., а также для подвода лектроэнергии к бытовым электроприборам. К Э. з. относятся устройства внутр. электроснабжения, электроустановки инженерного оборудования, осветит, установки. Внутр. электроснабжение осуществляется вводно-распределит. устройствами (ВРУ) по внутр. электрич. сетям, имеет аппаратуру и приборы защиты, управления, коммутации и учёта расхода электроэнергии. ВРУ размещают в месте ввода в здание питающих линий преим. напряжением 380/220 в. На вводной части ВРУ обычно устанавливают трёхполюсные рубильники (или переключатели) и аппаратуру защиты. В состав распределит, части ВРУ входят устройства защиты отходящих от него питающих линий и приборы учёта расхода электроэнергии. Вертикальные части (стояки) питающих линий служат для разводки электроэнергии по этажам и квартирам через групповые линии питания электроприёмников. В жилых зданиях обычно имеются 3 групповые линии: общего освещения, штепсельных розеток на ток 6 а (для подключения бытовых электроприборов мощностью до 1,3 квт) и штепсельных розеток с заземляющим контактом на ток 10 и 25 а (для питания приборов мощностью до 4 квт). Электроплиты подключают к 3-й групповой линии через дополнит, штепсельное соединение. Для питания электроустановок инж. оборудования и осветит, установок прокладывают отд. стояки, имеющие в начале линии автоматич. выключатели или плавкие предохранители.

Лит.: Электрические сети жилых здании, М., 1974; Справочная книга для проектирования электрического освещения, под ред. Г. М. Кнорринга, Л., 1976. Е. И. Афанасьева.

ЭЛЕКТРООБОРУДОВАНИЕ ТРАНСПОРТНЫХ МАШИН, комплекс электрич. устройств для получения, распределения и использования электроэнергии. В качестве источников тока на трансп. машинах применяются гл. обр. аккумуляторные батареи и генераторы электромашинные. Номенклатура и число потребителей электроэнергии зависят от конструктивных особенностей и условий эксплуатации различных трансп. средств. Напр., на мотоциклах потребителями электроэнергии являются свечи зажигания и фары, на автомобилях, тракторах и т. п., кроме того,- стартеры, осветит., контрольно-измерит. и сигнальные приборы, аппараты и приборы, повышающие комфортабельность, и др. На подвижном составе жел. дорог источники электроэнергии используются для питания сигнальных устройств, систем освещения, приводов вентиляторов и компрессоров, а также вспомогат. и спец. оборудования (электронагреватели, пылесосы, радиоаппаратура, в спец. поездах- станки, электроинструмент) и т. д., на летат. аппаратах электроэнергию потребляют приборы и др. средства управления, системы пуска двигателей, освещения, сигнализации и др. На судах потребителями электроэнергии являются двигатели приводов грузовых кранов, брашпилей, насосов, вентиляторов, механизмов машинного отделения, приборы управления, связи и освещения, навигац. оборудование и т. д. Электрич. сеть, связывающая источники тока с потребителями электроэнергии, в нек-рых случаях (на судах) может составлять неск. сотен км кабелей и проводов, насчитывать неск. тысяч различных распределит, устройств (см. Электрический аппарат).

Лит.: Галкин Ю. М., Электрооборудование автомобилейи тракторов, 2 изд., М., 1967; Банникове. П., Электрооборудование автомобилей, М., 1977; А щ е у л о в В. П., Б а б а е в А. М., Белькевич А. И., Судовые электросети и приборы управления, Л., 1970; Эксплуатация судового электрооборудования, М., 1975; Паленый Э. Г., Оборудование самолетов, М., 1968; Электроснабжение летательных аппаратов, М., 1975. В. И. Рытченко.

ЭЛЕКТРООПТИКА, раздел физики, в к-ром изучаются изменения оптич. свойств сред под действием электрич. поля и вызванные этими изменениями особенности взаимодействия оптического излучения (света) со средой, помещённой в поле. К Э. обычно относят эффекты, связанные с зависимостью преломления показателя п среды от напряжённости электрического поля Е (см. Поккелъгса эффект, Керра эффект, Штарка эффект).

ЭЛЕКТРООПТИЧЕСКИИ ДАЛЬНОМЕР, светодальномер, прибор для измерения расстояний по времени прохождения измеряемого расстояния электромагнитными волнами оптич. или инфракрасного диапазонов. Э. д. делятся на импульсные и фазовые (в зависимости от того, каким способом определяют время прохождения световым импульсом расстояния до объекта и обратно). Э. д. первого вида измеряют расстояние по времени между моментом испускания импульса передатчиком и моментом возвращения