БЭС:
Большой
Советский
Энциклопедический
Словарь

Термины:

ТУРБОХОД, судно, приводимое в движение паровой или газовой турбиной.
УБИЙСТВО, в уголовном праве преступление.
УЗБЕКСКИЙ ЯЗЫК, язык узбеков.
УПСАЛА (Uppsala), город в Швеции.
ФОРМООБРАЗОВАНИЕ, образование грамматич. форм слова.
ФОТОТАКСИС (от фото... и греч. taxis - расположение).
ФУРКАЦИЯ (от позднелат. furcatus-разделённый).
ЦЕЛАЯ ЧАСТЬ ЧИСЛА, см. Дробная и целая части числа.
"ТЕЛЕВИДЕНИЕ И РАДИОВЕЩАНИЕ", ежемесячный литературно-критич. и теоретич. иллюстрированный журнал.
ЭЙРИ ФУНКЦИИ, функции Ai(z) и Bi(z).


Фирмы: адреса, телефоны и уставные фонды - справочник предприятий оао в экономике.

Большая Советская Энциклопедия - энциклопедический словарь:А-Б В-Г Д-Ж З-К К-Л М-Н О-П Р-С Т-Х Ц-Я

8695912921652249431 потенциалы выделения металлов существенно зависят от величины перенапряжения водорода на соответствующем металле. В пром. масштабах рафинируют цинк, марганец, никель, железо и др. металлы; алюминий, магний, калий и др. получают электролизом расплавл. солей при 700-1000 °С. Последний способ связан с большим расходом электроэнергии (15-20 тыс. квт*ч/т) по сравнению с электролизом водных растворов (до 10 тыс. квт*ч/т).

Лит.: Беляев А. И., Металлургия легких металлов, 6 изд., М., 1970; Зеликман А. Н., М е е р с о н Г. А., Металлургия редких металлов, М., 1973; Е д н е р а л Ф. П., Электрометаллургия стали и ферросплавов, 4 изд., М., 1977.

В. А. Григорян.

ЭЛЕКТРОМЕТР (от электро... и ...метр), прибор, предназначенный для измерения разностей электрич. потенциалов, небольших электрич. зарядов, очень малых токов (вплоть до 10-15а) и др. электрич. величин, когда необходимо обеспечить пренебрежимо малое потребление энергии измерительным прибором. Э. представляет собой электростатический прибор с тремя электродами, находящимися в общем случае под разными потенциалами. Наиболее распространены струнные и квадрантные Э., применяемые для измерения напряжения.

В наиболее простом струнном Э. измеряемое напряжение подаётся на платиновую нить (струну) и неподвижные электроды (рис. а,6). Под действием сил электрич. поля нить прогибается; перемещение нити, служащее мерой измеряемой величины, наблюдают в микроскоп, что обеспечивает достаточно высокую чувствительность прибора. Для повышения чувствительности струнного Э. на его неподвижные электроды накладывают дополнит, напряжение (50-100 в относительно земли) такого же рода (постоянное или переменное) и той же частоты, что и измеряемое (рис. в). Чувствительность струнного Э. достигает 300-500 мм на 1 в/л. Квадрантные Э. состоят из подвижной части в виде тонкой и лёгкой металлич. пластинки - бисектора, наз. обычно "бисквитом", и связанного с ним зеркала, подвешенных па кварцевой нити, и неподвижной части - цилиндрич. металлич. коробки, разрезанной на четыре равные части - квадранты. При наличии разности потенциалов на квадрантах между ними и бисектором возникают электростатич. силы взаимодействия, отклоняющие подвижную часть Э. в ту или др. сторону. По углу отклонения бисектора при известном его потенциале судят о величине разности потенциалов квадрантов; если же известна последняя, то можно определить потенциал бисектора. Чувствительность квадрантного Э. - до 5000 мм на 1 в/л. Разновидность квадрантного Э. - бинантный Э. (неподвижная часть такого Э. разрезана на две части - бинанты).

Лит.: Курс электрических измерений, под ред. В. Т. Прыткова и А. В. Талицкого, ч. 1, М.- Л., 1960; В е к с л е р М. С., Электростатические приборы, М.- Л., 1964; Основы электроизмерительной техники, под ред. М. И. Левина, М., 1972.

ЭЛЕКТРОМЕТРИЧЕСКАЯ ЛАМПА, приёмно-усилителъная лампа, используемая в радио- и электроизмерит. приборах для усиления и измерения малых токов (до 10-14 а) в цепях с очень высоким электрич. сопротивлением. Конструктивно Э. л. выполняется в виде триода (одинарного или двойного), тетрода, или пентода. Катод Э. л. обычно оксидный, прямого либо косвенного накала. Гл. особенность Э. л.- высокое входное сопротивление, определяемое требованием получения малых токов управляющей сетки при её отрицат. потенциале. Появление сеточного тока в Э. л. связано с конечным значением сопротивления электрич. изоляции сетки (сопротивлением утечки сетки); ионизацией остаточных газов в баллоне лампы; термоэлектронной эмиссией сетки; фотоэлектронной эмиссией с поверхности сетки, обусловленной внеш. освещением, тепловым излучением нагретого катода, мягкими рентгеновскими лучами, возникающими при торможении электронов на аноде. Используя различные конструктивно-технологич. меры (важнейшие из к-рых - снижение темп-ры катода до 750-800 К; уменьшение анодного напряжения до значений, меньших потенциала ионизации остаточных газов, обычно до 10- 12 в; уменьшение размеров управляющей сетки и обеспечение её высокой электрич. изоляции), сеточный ток Э. л., обусловленный указанными факторами (кроме последнего), можно снизить до 10-15 а и меньше. Однако получение малых сеточных токов при удовлетворит, значениях таких осн. параметров Э. л., как крутизна её сеточной характеристики и коэфф. усиления, затруднено гл. обр. из-за фотоэлектронной эмиссии, вызванной мягким рентгеновским излучением. Так, при сеточном токе 10-15а крутизна сеточной характеристики обычно не превышает 100-120мка/в, а коэфф. усиления- 1,5; у т. н. полуэлектрометрич. ламп, работающих при сеточном токе ок. 5-10-11а, эти параметры составляют соответственно 1 ма/в и 25-30. Диапазон измеряемых значений тока (отношение его предельных значений) у Э. л. обычно ок. 100; у разновидности полуэлектрометрич. лампы - т. н. логарифмич. Э. л. (с характеристикой, обеспечивающей получение на выходе сигнала, пропорционального логарифму входного тока) он может достигать 108.

Лит.: 3 а р у ц к и и Ю. Ф., Современные электрометрические лампы, их возможности и пути развития, "Электровакуумная техника", 1968, в. 45; Кауфман М. С., П а л а т о в К. И., Электронные приборы, 3 изд., М.. 1970. М. С. Кауфман.

ЭЛЕКТРОМЕХАНИЧЕСКАЯ ОБРАБОТКА, разновидность электрофизич. методов обработки. Основана на механич. ударном импульсном воздействии (ультразвуковая обработка) или на непосредственном преобразовании предварительно накопленной электрич. энергии в механич. работу деформации (магнитоимпульсная обработка). См. Электрофизические и электрохимические методы обработки.

ЭЛЕКТРОМЕХАНИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ, устройство для преобразования механич. перемещений (колебаний) в изменение электрич. тока или напряжения (электрич. сигнал) и наоборот. Применяются гл. обр. как исполнит, устройства систем автоматич. регулирования (управления) и в качестве датчиков механич. перемещений в автоматике и измерит, технике. По принципу преобразования различают резистивные, электромагнитные, магнитоэлектрич., электростатич. Э. п.; по типу выходного сигнала - аналоговые и цифровые (с непрерывными и дискретными выходными сигналами). Для оценки Э. п. учитывают его статич. и динамич. характеристики, чувствительность (или коэфф. передачи) преобразования Е = &y/&x: (где &y - изменение выходной величины у при изменении входной величины х на &x), рабочий диапазон частот выходного сигнала, статич. ошибку (погрешность) сигнала, статич. ошибку (погрешность) преобразования. Примером Э. п. могут служить измерит, механизм магнитоэлектрического прибора, громкоговоритель, микрофон, пьезоэлектрический датчик.

Лит.: Электрические измерения неэлектрических величин, под ред. П. В. Новицкого, 5 изд.. Л., 1975.

ЭЛЕКТРОМИОГРАФИЯ {от электро..., мио... и ...графия), метод исследования биоэлектрич. потенциалов, возникающих в скелетных мышцах животных и человека при возбуждении мышечных волокон. У человека осуществлена впервые в 1907 нем. учёным Г. Пипером. Амплитуда колебаний потенциала мышцы обычно не превышает неск. милливольт, а их длительность - 20-25 мсек, поэтому Э. проводят с помощью усилителя и малоинерционного регистратора; кривая, записанная на фотобумаге, фотоплёнке и т. п., наз. электромиограммой (ЭМГ). В Э. могут быть выделены 3 осн. направления исследования. Первое из них - Э. с помощью введённых в мышцу игольчатых электродов, к-рые вследствие небольшой отводящей поверхности улавливают колебания потенциала, возникающие в отд. мышечных волог.чах или в группе мышечных волокон, пннер-вируемых одним мотонейроном. Это позволяет исследовать структуру и функцчго двигательных единиц. Второе направление - Э. с помощью накожных электродов, к-рые отводят т. н. суммарную ЭМГ, образующуюся в результате интерференции колебаний потенциала мн. двигательных единиц, находящихся в области отведения. Такая ЭМГ отражает процесс возбуждения мышцы как целого. Т. н. стимуляционная Э.- регистрация колебаний потенцала, возникающих в мышце при искусств, стимуляции нерва или органов чувств. Таким образом исследуется нервно-мышечная передача, рефлекторная деятельность двигат. аппарата, определяется скорость проведения возбуждения по нерву. Э. даёт возможность судить о состоянии и деятельности не только мышц, но и нервных центров, участвующих в осуществлении движений. Э. применяют в физиологии при изучении двигат. функции животных и особенно человека, а также в прикладных науках - физиологии труда и спорта, в инж. психологии (напр., при исследовании утомления, выработки двигательного навыка). Р. С. Персон. Э. как эффективный метод диагностики ряда нервно-мышечных заболеваний широко применяется в невропатологии и некоторых других областях медицины. Э. используется также для оценки функционального состояния двигат. аппарата при восстановлении нарушенной двигательной функции в ортопедии и протезировании.

Лит.: ПерсонР.С., Электромиография в исследованиях человека, М., 1969; Юсевич Ю. С., Очерки по клинической электромиографии, М., 1972; Байку ш е в Ст., М а н о в и ч 3. X., Новикова В. П., Стимуляционная электроннография и электронейрография в клинике нервных болезней, М., 1974; К о у э н X., Брумлик Дж., Руководство по электромиограф